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Abstract :Most previous research into the job-shop scheduling problem has concentrated on finding a single optimal 

solution (e.g., makespan), even though the actual requirement of most production systems requires multi -objective 

optimization. The aim of this paper is to construct a particle swarm optimization (PSO) for an elaborate multi -objective 

job-shop scheduling problem. The original PSO was used to solve continuous optimization problems. Due to the discrete 

solution spaces of scheduling optimization problems, the authors modified the particle position representation, particle 

movement, and particle velocity in this study. The modified PSO was used to solve various benchmark problems. Test  

results demonstrated that the modified PSO performed better in search quality and efficiency than traditional 

evolutionary heuristics.  
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1 INTRODUCTION 

 

1.1 Job-shop scheduling problem 

The single-objective JSP has attracted wide research attention. Most studies of single-objective JSPs result in a schedule 

to minimize the time required to complete all jobs, i.e., to minimize the makespan (Cmax). Many approximate methods 

have been developed to overcome the limitat ions of exact enumeration techniques. These approximate approaches 

include simulated annealing (SA), tabu search and genetic algorithms (GA). However, real -world production systems 

require simultaneous achievement of multiple objective requirements. This means that the academic concentration of 

objectives in the JSP must been extended from single to mult iple. Recent related JSP research with mult iple ob jectives is 

summarized as below. Ponnambalam has offered a mult i-object ive GA to derive optimal machine-wise priority 

dispatching rules for resolving job-shop problems with objective functions that consider minimization of makespan, total 

tardiness, and total machine id le time. Ponnambalam’s multi-objective genetic algorithm (MOGA) has been tested with 

various published benchmarks, and is capable of provid ing optimal or near-optimal solutions. One of the latest 

evolutionary techniques for unconstrained continuous optimization is particle swarm optimizat ion (PSO) proposed by 

Kennedy et al. . PSO has been successfully used in different fields due to its ease of implementation and computational 

efficiency. Even so, application of PSO to the combination optimization problem is rare. Coello et al. provided an 

approach in which Pareto dominance is incorporated into PSO to allow the heuristic to handle problems with several 

object functions. The algorithm uses a secondary repository of part icles to guide particle flight. That approach was 

validated using several test functions and metrics drawn from the standard literature on evolutionary mult i-objective 

optimization. The results show that the approach is highly competitive. Liang et  al. invented a novel PSO -based 

algorithm for JSPs. That algorithm effectively  exp loits the capability of distributed and parallel computing systems, with 

simulation results showing the possibility of high-quality solutions for typical benchmark problems. Lei presented a PSO 

for the mult i-object ive JSP to min imize makespan and total job tardiness simultaneously. Job -shop scheduling can be 

converted into a continuous optimizat ion problem by constructing the corresponding relationship between a real vector 

and a chromosome obtained using the priority rule -based representation method. The global best position selection is 

combined with crowding-measure-based archive maintenance to design a Pareto archive PSO. That algorithm is capable 

of producing a number of h igh-quality Pareto optimal scheduling plans. Hybrid  algorithms that combine d ifferent 

approaches to build on their strengths have led to another branch of research. Previous literature indicates that there has 

been little  study of the JSP with multiple objectives. In  this study, we use a new evolutionary PSO technique to solve the 

JSP with mult iple object ives.  

1.2 Particle Swarm Optimization (PSO) is a computational method that optimizes a problem by iterat ively try ing to 

improve a candidate solution with regard to a given measure of quality. PSO optimizes a problem by having a population 

of candidate solutions, here dubbed particles, and moving these particles around in the search-space according to simple 

mathematical formulae over the particle 's position and velocity. Each particle 's movement is influenced by its local best 

http://en.wikipedia.org/wiki/Mathematical_optimization
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Point_particle
http://en.wikipedia.org/wiki/Optimization_%28mathematics%29
http://en.wikipedia.org/wiki/Formula
http://en.wikipedia.org/wiki/Position_%28vector%29
http://en.wikipedia.org/wiki/Velocity
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known position and is also guided toward the best known positions in the search-space, which are updated as better 
positions are found by other particles. This is expected to move the swarm toward the best solutions. 

2 LITERATURE REVIEW 

 

2.1 Job constraints (β) 

Brucker and T’Kindt and Billaut have done significant work in identifying various types of constraints on the job 

characteristics, which, when included, may significantly affect the realis m of the scheduling model.  

Yang and Liao define set-up times as the times of the tasks which need to be performed before a job can be processed 

immediately after another job on the same resource. 

 

2.2 Availability intervals  

Lee d ifferentiates between three types of unavailability intervals, namely resumable,  

non-resumable, and semi resumable unavailable intervals. White and Rogers address a job shop scheduling problem with 

unavailability intervals by means of a disjunctive graph formulation.  

 

2.3 Auxiliary resources  

Studies performed by Mason indicate that 16% of scheduled production cannot be met beca use tooling is typically not 

available. Additionally, 40% to 80% of a fo reman’s time is spent looking for and expedit ing materials and tools. Gargeya 

and Deane describe the multip le resource constrained job shop scheduling problem: a job shop in which two  or more 

resource types constrain output. Brucker defines a class of problems that is very similar to the multip le resources 

constrained JSSP: the multiprocessor task job shop scheduling problem.  

 

2.4 Objective function (γ) 

The final field of Graham et al.’s notation focuses on this aspect of schedule optimizat ion. Brucker provides a list of the 

most common measurements which can be used for objective function formulation. Any of the five measures in Table 

2.1 can be used to formulate at least four d ifferent objective functions of the form: max {qv | v = 1 . . . , nj}, v=1njqv, 

v=1njwvqv and max{wvqv | v = 1 . . . , nj}, where qv denotes the measurement associated with job v, wv and dv denote the 

weight and the due date of job v, and n j is the total number of jobs to be scheduled. For example, the following four 

objective functions can be formulated for job completion time, where Cv denotes the completion time of job v: make span 

(max {Cv | v = 1 . . . , nj}), total flow time (v=1njCv) and weighted total flow t ime (v=1njwvCv).  

 

Table 2.1: Commonly used job shop scheduling measurements  

JSSP measurement                  Formulat ion 

Lateness                               Lv = Cv − dv 

Earliness                              Ev = max{0, dv − Cv} 

Tardiness                             Tv = max{0,Cv − dv} 

Absolute deviation                D1v =| Cv − dv | 

Squared deviation                 D2v = (Cv − dv)
2
 

 

2.5 History and Early Methods of Optimization  

One of the most famous and defining works in scheduling theory was published in the early 1960’s. Giffler and 

Thompson’s “Algorithms for Solving Production Scheduling Problems” introduced the most famous and widely used 

scheduling algorithm, called the GT algorithm. The GT algorithm insures the construction of an active schedule. Three 

years later “Industrial Scheduling” by Muth and Thompson was published which introduced the first famous job shop 

scheduling benchmark problem, a (10 ×10) problem that took 2 0 years to  solve exactly, because of the h igh 

combinational complexity, which are the nature of such problems. In “A State -of-the-art Review of Job-Shop”Jain and 

Meeran divide the approaches to the solving this huge combinatorial problem into two main tech niques, efficient and 

exact. Exact methods, obviously, use mathematical formulations to arrive exact ly at  the optimal solution. Since the 

problem space of the JSP problem is so large, these exact methods are not useful for anything but problems of small 

dimension, probably (10 ×10) or less. The proposed paper has focused on the application of a meta -heuristic technique 

called Particle Swarm Optimization (PSO). As will be shown, not much research has been conducted in the area of the 

JSP and the PSO, although the JSP does have a long history exploit ing other meta-heuristic techniques shown in Figure, 

especially the Genetic Algorithm. Approximate methods, called approximate because they do not use mathemat ical 

formulat ions, calculation of g radient for example,  to arrive at an exact optimal solution. In 1985 Davis was the first to 

apply an evolutionary algorithm in an effort to solve the Job Shop Problem. He used a genetic algorithm to evolve a 

priority list for each machine. An example of a priority list for a (5× 5) problem is given in Table 2.4 
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Table 2.2: Priority List Representation  

 

 First 

Priority  

Second 

Priority  

Third  

Priority  

Fourth 

Priority  

Fifth 

Priority  

Machine 1: Job 2 Job 4 Job 1 Job 5 Job 3 

Machine 2: Job 1 Job 3 Job 5 Job 2 Job 4 

Machine 3: Job 4 Job 2 Job 5 Job 1 Job 3 

Machine 4: Job 3 Job 1 Job 2 Job 4 Job 5 

Machine 5: Job 5 Job 3 Job 4 Job 2 Job 2 

 

Most of the research has been focused on the Genetic Algorithm (GA), although some consider the GA an ineffective 

way to solve the JSP. When compared to Simulated Annealing (SA), Tabu Search (TS), the GA seems to perform the 

poorest according to a comparative study done by Pirlot.  

 

2.6 Particle S warm Optimization  

Particle Swarm Optimization As of yet, Part icle Swarm Optimizat ion has not been applied to the tradit ional Job Shop 

Problem, with one exception. In 2004 Weijun, et al.  applied a hybrid Simulated Annealing/PSO to the tradit ional JSP. In  

their study, Simulated Annealing (SA) was used to fine tune solutions found by the PSO algorithm. The results of this 

hybrid algorithm were very promising. Tasgetiren, et  al. in 2004 applied PSO to the Single Machine  Weighted Tardiness 

problem. They developed the Smallest Value Position Rule (SVP) in  order to transform the continuous space of the PSO 

to the permutation space used to represent a solution of the SMTWT problem. Tasgetiren also published a paper on the 

PSO applied to the Permutation Flowshop Sequencing Problem, along with Liang, Sevkli, and Gencyilmaz. The same 

SPV rule was used for the necessary space transformation from continuous to permutation space. This space 

transformation concept was used for the Traveling Salesman Problem by Pang, et al. in 2004. Their method of space 

transformation was called the GVP rule, or Greatest Value Priority. Using PSO and local search techniques they were 

able to solve medium scale (50 – 75 city) TSP Problems 

 

Particle Swarm Optimization has also been applied to the Flexib le Job Shop Problem (FJSP) by Xia and Wu recently in 

2005.. They used the PSO not to determine the schedule, but to assign each operation to a machine as is required for the 

FJSP. 

Not all researchers have used this particular space transformation technique to apply the PSO in permutation problems. In  

2003 Pang, et al. developed a way to represent the difference in  two permutations as a function of Swap Operators (SO). 

These Swap Operators perform a switch on two numbers in a permutation, and multip le swap operators in a given order 

form a Swap Sequence (SS). Lian, Gu and Jiao in 2005 developed a Similar Particle Swarm Optimizat ion Agorithm 

(SPSOA) and applied  it  to the Flow-shop Problem (FSSP or PFSP).. These researchers, like Pang, et al. developed a way  

for the PSO algorithms to operate d irectly  in  the space of permutation problems. Their PSO algorithm is called “similar” 

because they used crossover and mutation techniques, easily performed  on permutatio ns, but originally developed for the 

Genetic Algorithms (GA). Their crossover and mutation operations were used to update the velocity and position of the 

particles in the PSO-like algorithm. 

 

3 PROBLEM DEFINITION AND FORMULATION 

 

3.1 The Job Shop Problem 

The Job Shop Problem (JSP) is one of many types of scheduling problems that researchers from many fields are currently  

attempting to solve optimally  using various meta-heuristic algorithms. The solution to these scheduling problems is 

simply the determination of the optimal assignment of a fin ite number of resources to a finite number of operations, 

while adhering to many pre-defined constraints, usually precedent constraints. 

 

3.2  The Job Shop Problem Definition  

A (n × m) Job Shop Problem is defined by a specific number of jobs, n, each consisting of an order of operations, m, 

which are equal to the number of machines or resources specified in  the problem. So a job, Ji is a predefined order of 

operations Oi = (Oi,1, Oi,2, …, Oi,m). Each operation Oij has a processing time, or job duration, Oij. For the tradit ional JSP 

the following ru les apply: 

• Each job must be processed by each machine in a certain order (precedent constraints) 

• Each machine can only process one job at a time  

• Each job can only be processed by one machine at a t ime  

• Each job must be processed by each machine exactly once  
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• No preemption is allowed, or once a job has started processing it cannot be interrupted. 

 

An example of a (10 ×10) JSP, the famous MT10  problem, is shown in table 3.1 

Table 3.1: Scheduling Problem Example  

Machine Sequence (Processing Time) 

Job 1:   0 (29) 1 (78) 2 (9)   3 (36) 4 (49) 5 (11) 6 (62) 7 (56) 8 (44) 9 (21) 

Job 2:   0 (43) 2 (90) 4 (75) 9 (11) 3 (69) 1 (28) 6 (46) 5 (46) 7 (72) 8 (30)  

Job 3:   1 (91) 0 (85) 3 (39) 2 (74) 8 (90) 5 (10) 7 (12) 6 (89) 9 (45) 4 (33)  

Job 4:   1 (81) 2 (95) 0 (71) 4 (99) 6 (9)   8 (52) 7 (85) 3 (98) 9 (22) 5 (43) 

Job 5:   2 (14) 0 (6)   1 (22) 5 (61) 3 (26) 4 (69) 8 (21) 7 (49) 9 (72) 6 (53)  

Job 6:   2 (84) 1 (2)   5 (52) 3 (95) 8 (48) 9 (72) 0 (47) 6 (65) 4 (6) 7   (25) 

Job 7:   1 (46) 0 (37) 3 (61) 2 (13) 6 (32) 5 (21) 9 (32) 8 (89) 7 (30) 4 (55)  

Job 8:   2 (31) 0 (86) 1 (46) 5 (74) 4 (32) 6 (88) 8 (19) 9 (48) 7 (36) 3 (79)  

Job 9:   0 (76) 1 (69) 3 (76) 5 (51) 2 (85) 9 (11) 6 (40) 7 (89) 4 (26) 8 (74) 

Job 10: 1 (85) 0 (13) 2 (61) 6 (7)   8 (64) 9 (76) 5 (47) 3 (52) 4 (90) 7 (45) 

3.3 Related Scheduling Problems  

The traditional Job Shop Problem has many “cousins”, or other scheduling problems with the same goal, to produce an  

optimal schedule of a number of jobs through a number of machines. The Flexib le Job Shop Scheduling Problem 

Another scheduling problem that proves it to be computationally hard  is the Flexib le Job Shop Scheduling problem 

(FJSP). The Flow Shop Scheduling Prob lem The Flow Shop Scheduling Problem (FSP) is another n job by m machine 

scheduling problem. The FSP differs from the JSP in that each job j has the same order of operations, or precedent 

constraints. The Single Machine Weighted Tardiness Problem In the Single Machine Weighted Tardiness Problem 

(SMWTP) there is only one single machine and a list of operations to be processed on that machine.  

 

3.4 Types of Schedules  

Semi-active Schedules  Semi-act ive schedules are schedules in which the next  operation in  a technological sequence is 

scheduled at the earliest allowable t ime. Active Schedules These are schedules in which no operation can be started 

earlier without violat ing a precedent constraint, or increasing the total processing time of any machine. Non-Delay  

Schedules These are schedules in which no machine is kept idle while it could  be processing an operation. Parameterized  

Active Schedules Parameterized Active Schedules are non-delay schedules where the delay is no more than a specified 

parameter. 
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Fig 3.1 Relationship between Schedules 

3.5 Representation of Schedules  

In the examples of prev ious sections, Gantt Charts have been used to show various solutions to t he Job Shop Problem. 

Gantt Charts allow a v isual interpretation of a schedule, which is helpful when analyzing the makespan of a Job Shop 

Problem, or the classification of a schedule. Usually  a Gantt chart is built from a representation of the schedule in the 

form of numbers or in the form of permutations. This representation can be of a direct fashion or indirect fashion, both 

have its advantages and disadvantages. 

 

4 PROPOS ED METHODOLOGY 

The concept was to give each particle a social component and an individual component. Individual particles’ behaviours 

would be influenced by their best positions (in the search space) found and by the best positions found by all particles in  

the swarm. Their hope was to design a search method that was able to find multip le optima not just the global. This way  

the particles can explore the search space and eventually converge to the global optimum. The agents or particles in this 

algorithm search the problem space by “moving through it” with a certain velocity. Each positio n a particle has in this 

space represents a possible solution to the problem at  hand. The part icles in a tradit ional PSO algorithm are governed by 

the following equations for a single dimension in Figure 4.1.  

 Momentum Component         Social Component 

 

 

 vi(t+1) = w*vi(t) + c1*r1 (pbesti – xi(t)) + c2*r2 (gbesti – xi(t))     

         Velocity update equation 

Personal Component 
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xi(t+1) = xi(t) + vi (t+1) 

   Position update equation 

 

• i = 1, 2…p , p = number of part icles in swarm 

• pbest is the best position found by that particle so far 

• gbest is the best position found by any particle so far  

• v = velocity of particle in a single dimension 

• x = position of particle in a single d imension 

• t = iteration number 

• w is the inertial constant 

• c1, c2 are acceleration constants 

• r1, r2 are random numbers evenly distributed between (0,1)  

 

The problem space can be represented in a 3-dimensional cube. In order to optimize this problem using PSO, we must 

randomly  generate particles in the search space. The size of our swarm will consist of only 3 particles in  an effort  to 

make the graphics that follow easier to understand. Normally, the swarm size is much larger, anywhere from the tens to 

the hundreds. The init ial positions (representing three init ial solutions) are shown in Figure 4.2  below. The constants C1 

and C2 for this example will both be set to 2. 

When those particles’ values are plugged back into our objective function, we get the following:  

Particle 1: 4.0759 

Particle 2: 4.3770 

Particle 3: 1.3088 

 

Neither of these solutions is very good, however the best solution is the solution represent by Particle 3. Knowing how 

PSO works, we would expect the other two particles to move in the direction of Particle 3, at least at first. This can be 

seen in the figure below. After 100 iterations, the particles of travelled  very close to the optimal solution. Their paths are 

shown in the next two figures, Figure 4.3 and 4.4 from different distances. 

 

Fig. 4.2                    Fig 4.3                                Fig 4.4 

 

5 RES ULT & DISCUSS ION  

 

The results of small size  problem of  3*3 ie, 3 job on 3 machine, medium size problem of 6*6 ie, 6 job on 6 machine and 

a large p roblem of 10*10 ie, 10 jobs on 10 machine were predicted and it is found to be 12, 55 and 1194 seconds 

respectively. These results were obtained using particle swarm optimization (PSO) and it is better tha n results obtained 

by Genetic Algorithm. The machine processing time, idle time and make span time are also shown with the help of Gantt 

Chart. 

 

6 CONCLUS ION 

Particle swarm optimizat ion is an extremely simple algorithm that seems to be effective for optimi zing a wide range of 

functions. We view it as a mid-level form of A -life or bio logically derived algorithm, occupying the space in nature 

between evolutionary search, which requires eons, and neural processing, which occurs on the order of milliseconds. 

Social optimization occurs in the time frame of ord inary experience - in fact, it is ordinary experience. In addition to its 

ties with A-life, part icle swarm optimizat ion has obvious ties with evolutionary computation. Conceptually, it seems to 

lie  somewhere between genetic algorithms and evolutionary programming. It is highly dependent on stochastic processes, 
like evolutionary programming. 
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7 SCOPE OF FUTURE WORK  

Much further research remains to be conducted on this simple new concept and paradigm. The goals in developing it 

have been to keep it simple and robust, and we seem to have succeeded at that. The algorithm is written in a very few 

lines of code, and requires only specification of the problem and a few parameters in order to solve it. Further 
improvement can be done using hybrid optimization algorithms. 
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