
 International Journal of Advance Engineering and Research
Development

Volume 2,Issue 5, May -2015

@IJAERD-2015, All rights Reserved 505

Scientific Journal of Impact Factor(SJIF): 3.134
e-ISSN(O): 2348-4470

p-ISSN(P): 2348-6406

A Literature Review on Solving Job Shop Scheduling Problem with Particle

Swarm Optimization (PSO)

Abhijeet Thakur
1

& Dr. V N Bartaria
2,

1
P.G. Scholar,

2
Professor & HOD, Department of Mechanical Engineering, Lakshmi Narain College of Technology,

Bhopal, India

Abstract :Most previous research into the job-shop scheduling problem has concentrated on finding a single optimal

solution (e.g., makespan), even though the actual requirement of most production systems requires multi -objective

optimization. The aim of this paper is to construct a particle swarm optimization (PSO) for an elaborate multi -objective

job-shop scheduling problem. The original PSO was used to solve continuous optimization problems. Due to the discrete

solution spaces of scheduling optimization problems, the authors modified the particle position representation, particle

movement, and particle velocity in this study. The modified PSO was used to solve various benchmark problems. Test

results demonstrated that the modified PSO performed better in search quality and efficiency than traditional

evolutionary heuristics.

Keywords : Job-shop scheduling, Particle Swarm Optimization, Multiple Objectives

1 INTRODUCTION

1.1 Job-shop scheduling problem

The single-objective JSP has attracted wide research attention. Most studies of single-objective JSPs result in a schedule

to minimize the time required to complete all jobs, i.e., to minimize the makespan (Cmax). Many approximate methods

have been developed to overcome the limitat ions of exact enumeration techniques. These approximate approaches

include simulated annealing (SA), tabu search and genetic algorithms (GA). However, real -world production systems

require simultaneous achievement of multiple objective requirements. This means that the academic concentration of

objectives in the JSP must been extended from single to mult iple. Recent related JSP research with mult iple ob jectives is

summarized as below. Ponnambalam has offered a mult i-object ive GA to derive optimal machine-wise priority

dispatching rules for resolving job-shop problems with objective functions that consider minimization of makespan, total

tardiness, and total machine id le time. Ponnambalam’s multi-objective genetic algorithm (MOGA) has been tested with

various published benchmarks, and is capable of provid ing optimal or near-optimal solutions. One of the latest

evolutionary techniques for unconstrained continuous optimization is particle swarm optimizat ion (PSO) proposed by

Kennedy et al. . PSO has been successfully used in different fields due to its ease of implementation and computational

efficiency. Even so, application of PSO to the combination optimization problem is rare. Coello et al. provided an

approach in which Pareto dominance is incorporated into PSO to allow the heuristic to handle problems with several

object functions. The algorithm uses a secondary repository of part icles to guide particle flight. That approach was

validated using several test functions and metrics drawn from the standard literature on evolutionary mult i-objective

optimization. The results show that the approach is highly competitive. Liang et al. invented a novel PSO -based

algorithm for JSPs. That algorithm effectively exp loits the capability of distributed and parallel computing systems, with

simulation results showing the possibility of high-quality solutions for typical benchmark problems. Lei presented a PSO

for the mult i-object ive JSP to min imize makespan and total job tardiness simultaneously. Job -shop scheduling can be

converted into a continuous optimizat ion problem by constructing the corresponding relationship between a real vector

and a chromosome obtained using the priority rule -based representation method. The global best position selection is

combined with crowding-measure-based archive maintenance to design a Pareto archive PSO. That algorithm is capable

of producing a number of h igh-quality Pareto optimal scheduling plans. Hybrid algorithms that combine d ifferent

approaches to build on their strengths have led to another branch of research. Previous literature indicates that there has

been little study of the JSP with multiple objectives. In this study, we use a new evolutionary PSO technique to solve the

JSP with mult iple object ives.

1.2 Particle Swarm Optimization (PSO) is a computational method that optimizes a problem by iterat ively try ing to

improve a candidate solution with regard to a given measure of quality. PSO optimizes a problem by having a population

of candidate solutions, here dubbed particles, and moving these particles around in the search-space according to simple

mathematical formulae over the particle 's position and velocity. Each particle 's movement is influenced by its local best

http://en.wikipedia.org/wiki/Mathematical_optimization
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Point_particle
http://en.wikipedia.org/wiki/Optimization_%28mathematics%29
http://en.wikipedia.org/wiki/Formula
http://en.wikipedia.org/wiki/Position_%28vector%29
http://en.wikipedia.org/wiki/Velocity

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 2,Issue 5, May -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2015, All rights Reserved 506

known position and is also guided toward the best known positions in the search-space, which are updated as better
positions are found by other particles. This is expected to move the swarm toward the best solutions.

2 LITERATURE REVIEW

2.1 Job constraints (β)

Brucker and T’Kindt and Billaut have done significant work in identifying various types of constraints on the job

characteristics, which, when included, may significantly affect the realis m of the scheduling model.

Yang and Liao define set-up times as the times of the tasks which need to be performed before a job can be processed

immediately after another job on the same resource.

2.2 Availability intervals

Lee d ifferentiates between three types of unavailability intervals, namely resumable,

non-resumable, and semi resumable unavailable intervals. White and Rogers address a job shop scheduling problem with

unavailability intervals by means of a disjunctive graph formulation.

2.3 Auxiliary resources

Studies performed by Mason indicate that 16% of scheduled production cannot be met beca use tooling is typically not

available. Additionally, 40% to 80% of a fo reman’s time is spent looking for and expedit ing materials and tools. Gargeya

and Deane describe the multip le resource constrained job shop scheduling problem: a job shop in which two or more

resource types constrain output. Brucker defines a class of problems that is very similar to the multip le resources

constrained JSSP: the multiprocessor task job shop scheduling problem.

2.4 Objective function (γ)

The final field of Graham et al.’s notation focuses on this aspect of schedule optimizat ion. Brucker provides a list of the

most common measurements which can be used for objective function formulation. Any of the five measures in Table

2.1 can be used to formulate at least four d ifferent objective functions of the form: max {qv | v = 1 . . . , nj}, v=1njqv,

v=1njwvqv and max{wvqv | v = 1 . . . , nj}, where qv denotes the measurement associated with job v, wv and dv denote the

weight and the due date of job v, and n j is the total number of jobs to be scheduled. For example, the following four

objective functions can be formulated for job completion time, where Cv denotes the completion time of job v: make span

(max {Cv | v = 1 . . . , nj}), total flow time (v=1njCv) and weighted total flow t ime (v=1njwvCv).

Table 2.1: Commonly used job shop scheduling measurements

JSSP measurement Formulat ion

Lateness Lv = Cv − dv

Earliness Ev = max{0, dv − Cv}

Tardiness Tv = max{0,Cv − dv}

Absolute deviation D1v =| Cv − dv |

Squared deviation D2v = (Cv − dv)
2

2.5 History and Early Methods of Optimization

One of the most famous and defining works in scheduling theory was published in the early 1960’s. Giffler and

Thompson’s “Algorithms for Solving Production Scheduling Problems” introduced the most famous and widely used

scheduling algorithm, called the GT algorithm. The GT algorithm insures the construction of an active schedule. Three

years later “Industrial Scheduling” by Muth and Thompson was published which introduced the first famous job shop

scheduling benchmark problem, a (10 ×10) problem that took 2 0 years to solve exactly, because of the h igh

combinational complexity, which are the nature of such problems. In “A State -of-the-art Review of Job-Shop”Jain and

Meeran divide the approaches to the solving this huge combinatorial problem into two main tech niques, efficient and

exact. Exact methods, obviously, use mathematical formulations to arrive exact ly at the optimal solution. Since the

problem space of the JSP problem is so large, these exact methods are not useful for anything but problems of small

dimension, probably (10 ×10) or less. The proposed paper has focused on the application of a meta -heuristic technique

called Particle Swarm Optimization (PSO). As will be shown, not much research has been conducted in the area of the

JSP and the PSO, although the JSP does have a long history exploit ing other meta-heuristic techniques shown in Figure,

especially the Genetic Algorithm. Approximate methods, called approximate because they do not use mathemat ical

formulat ions, calculation of g radient for example, to arrive at an exact optimal solution. In 1985 Davis was the first to

apply an evolutionary algorithm in an effort to solve the Job Shop Problem. He used a genetic algorithm to evolve a

priority list for each machine. An example of a priority list for a (5× 5) problem is given in Table 2.4

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 2,Issue 5, May -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2015, All rights Reserved 507

Table 2.2: Priority List Representation

 First

Priority

Second

Priority

Third

Priority

Fourth

Priority

Fifth

Priority

Machine 1: Job 2 Job 4 Job 1 Job 5 Job 3

Machine 2: Job 1 Job 3 Job 5 Job 2 Job 4

Machine 3: Job 4 Job 2 Job 5 Job 1 Job 3

Machine 4: Job 3 Job 1 Job 2 Job 4 Job 5

Machine 5: Job 5 Job 3 Job 4 Job 2 Job 2

Most of the research has been focused on the Genetic Algorithm (GA), although some consider the GA an ineffective

way to solve the JSP. When compared to Simulated Annealing (SA), Tabu Search (TS), the GA seems to perform the

poorest according to a comparative study done by Pirlot.

2.6 Particle S warm Optimization

Particle Swarm Optimization As of yet, Part icle Swarm Optimizat ion has not been applied to the tradit ional Job Shop

Problem, with one exception. In 2004 Weijun, et al. applied a hybrid Simulated Annealing/PSO to the tradit ional JSP. In

their study, Simulated Annealing (SA) was used to fine tune solutions found by the PSO algorithm. The results of this

hybrid algorithm were very promising. Tasgetiren, et al. in 2004 applied PSO to the Single Machine Weighted Tardiness

problem. They developed the Smallest Value Position Rule (SVP) in order to transform the continuous space of the PSO

to the permutation space used to represent a solution of the SMTWT problem. Tasgetiren also published a paper on the

PSO applied to the Permutation Flowshop Sequencing Problem, along with Liang, Sevkli, and Gencyilmaz. The same

SPV rule was used for the necessary space transformation from continuous to permutation space. This space

transformation concept was used for the Traveling Salesman Problem by Pang, et al. in 2004. Their method of space

transformation was called the GVP rule, or Greatest Value Priority. Using PSO and local search techniques they were

able to solve medium scale (50 – 75 city) TSP Problems

Particle Swarm Optimization has also been applied to the Flexib le Job Shop Problem (FJSP) by Xia and Wu recently in

2005.. They used the PSO not to determine the schedule, but to assign each operation to a machine as is required for the

FJSP.

Not all researchers have used this particular space transformation technique to apply the PSO in permutation problems. In

2003 Pang, et al. developed a way to represent the difference in two permutations as a function of Swap Operators (SO).

These Swap Operators perform a switch on two numbers in a permutation, and multip le swap operators in a given order

form a Swap Sequence (SS). Lian, Gu and Jiao in 2005 developed a Similar Particle Swarm Optimizat ion Agorithm

(SPSOA) and applied it to the Flow-shop Problem (FSSP or PFSP).. These researchers, like Pang, et al. developed a way

for the PSO algorithms to operate d irectly in the space of permutation problems. Their PSO algorithm is called “similar”

because they used crossover and mutation techniques, easily performed on permutatio ns, but originally developed for the

Genetic Algorithms (GA). Their crossover and mutation operations were used to update the velocity and position of the

particles in the PSO-like algorithm.

3 PROBLEM DEFINITION AND FORMULATION

3.1 The Job Shop Problem

The Job Shop Problem (JSP) is one of many types of scheduling problems that researchers from many fields are currently

attempting to solve optimally using various meta-heuristic algorithms. The solution to these scheduling problems is

simply the determination of the optimal assignment of a fin ite number of resources to a finite number of operations,

while adhering to many pre-defined constraints, usually precedent constraints.

3.2 The Job Shop Problem Definition

A (n × m) Job Shop Problem is defined by a specific number of jobs, n, each consisting of an order of operations, m,

which are equal to the number of machines or resources specified in the problem. So a job, Ji is a predefined order of

operations Oi = (Oi,1, Oi,2, …, Oi,m). Each operation Oij has a processing time, or job duration, Oij. For the tradit ional JSP

the following ru les apply:

• Each job must be processed by each machine in a certain order (precedent constraints)

• Each machine can only process one job at a time

• Each job can only be processed by one machine at a t ime

• Each job must be processed by each machine exactly once

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 2,Issue 5, May -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2015, All rights Reserved 508

• No preemption is allowed, or once a job has started processing it cannot be interrupted.

An example of a (10 ×10) JSP, the famous MT10 problem, is shown in table 3.1

Table 3.1: Scheduling Problem Example

Machine Sequence (Processing Time)

Job 1: 0 (29) 1 (78) 2 (9) 3 (36) 4 (49) 5 (11) 6 (62) 7 (56) 8 (44) 9 (21)

Job 2: 0 (43) 2 (90) 4 (75) 9 (11) 3 (69) 1 (28) 6 (46) 5 (46) 7 (72) 8 (30)

Job 3: 1 (91) 0 (85) 3 (39) 2 (74) 8 (90) 5 (10) 7 (12) 6 (89) 9 (45) 4 (33)

Job 4: 1 (81) 2 (95) 0 (71) 4 (99) 6 (9) 8 (52) 7 (85) 3 (98) 9 (22) 5 (43)

Job 5: 2 (14) 0 (6) 1 (22) 5 (61) 3 (26) 4 (69) 8 (21) 7 (49) 9 (72) 6 (53)

Job 6: 2 (84) 1 (2) 5 (52) 3 (95) 8 (48) 9 (72) 0 (47) 6 (65) 4 (6) 7 (25)

Job 7: 1 (46) 0 (37) 3 (61) 2 (13) 6 (32) 5 (21) 9 (32) 8 (89) 7 (30) 4 (55)

Job 8: 2 (31) 0 (86) 1 (46) 5 (74) 4 (32) 6 (88) 8 (19) 9 (48) 7 (36) 3 (79)

Job 9: 0 (76) 1 (69) 3 (76) 5 (51) 2 (85) 9 (11) 6 (40) 7 (89) 4 (26) 8 (74)

Job 10: 1 (85) 0 (13) 2 (61) 6 (7) 8 (64) 9 (76) 5 (47) 3 (52) 4 (90) 7 (45)

3.3 Related Scheduling Problems

The traditional Job Shop Problem has many “cousins”, or other scheduling problems with the same goal, to produce an

optimal schedule of a number of jobs through a number of machines. The Flexib le Job Shop Scheduling Problem

Another scheduling problem that proves it to be computationally hard is the Flexib le Job Shop Scheduling problem

(FJSP). The Flow Shop Scheduling Prob lem The Flow Shop Scheduling Problem (FSP) is another n job by m machine

scheduling problem. The FSP differs from the JSP in that each job j has the same order of operations, or precedent

constraints. The Single Machine Weighted Tardiness Problem In the Single Machine Weighted Tardiness Problem

(SMWTP) there is only one single machine and a list of operations to be processed on that machine.

3.4 Types of Schedules

Semi-active Schedules Semi-act ive schedules are schedules in which the next operation in a technological sequence is

scheduled at the earliest allowable t ime. Active Schedules These are schedules in which no operation can be started

earlier without violat ing a precedent constraint, or increasing the total processing time of any machine. Non-Delay

Schedules These are schedules in which no machine is kept idle while it could be processing an operation. Parameterized

Active Schedules Parameterized Active Schedules are non-delay schedules where the delay is no more than a specified

parameter.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 2,Issue 5, May -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2015, All rights Reserved 509

Fig 3.1 Relationship between Schedules

3.5 Representation of Schedules

In the examples of prev ious sections, Gantt Charts have been used to show various solutions to t he Job Shop Problem.

Gantt Charts allow a v isual interpretation of a schedule, which is helpful when analyzing the makespan of a Job Shop

Problem, or the classification of a schedule. Usually a Gantt chart is built from a representation of the schedule in the

form of numbers or in the form of permutations. This representation can be of a direct fashion or indirect fashion, both

have its advantages and disadvantages.

4 PROPOS ED METHODOLOGY

The concept was to give each particle a social component and an individual component. Individual particles’ behaviours

would be influenced by their best positions (in the search space) found and by the best positions found by all particles in

the swarm. Their hope was to design a search method that was able to find multip le optima not just the global. This way

the particles can explore the search space and eventually converge to the global optimum. The agents or particles in this

algorithm search the problem space by “moving through it” with a certain velocity. Each positio n a particle has in this

space represents a possible solution to the problem at hand. The part icles in a tradit ional PSO algorithm are governed by

the following equations for a single dimension in Figure 4.1.

 Momentum Component Social Component

 vi(t+1) = w*vi(t) + c1*r1 (pbesti – xi(t)) + c2*r2 (gbesti – xi(t))

 Velocity update equation

Personal Component

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 2,Issue 5, May -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2015, All rights Reserved 510

xi(t+1) = xi(t) + vi (t+1)

 Position update equation

• i = 1, 2…p , p = number of part icles in swarm

• pbest is the best position found by that particle so far

• gbest is the best position found by any particle so far

• v = velocity of particle in a single dimension

• x = position of particle in a single d imension

• t = iteration number

• w is the inertial constant

• c1, c2 are acceleration constants

• r1, r2 are random numbers evenly distributed between (0,1)

The problem space can be represented in a 3-dimensional cube. In order to optimize this problem using PSO, we must

randomly generate particles in the search space. The size of our swarm will consist of only 3 particles in an effort to

make the graphics that follow easier to understand. Normally, the swarm size is much larger, anywhere from the tens to

the hundreds. The init ial positions (representing three init ial solutions) are shown in Figure 4.2 below. The constants C1

and C2 for this example will both be set to 2.

When those particles’ values are plugged back into our objective function, we get the following:

Particle 1: 4.0759

Particle 2: 4.3770

Particle 3: 1.3088

Neither of these solutions is very good, however the best solution is the solution represent by Particle 3. Knowing how

PSO works, we would expect the other two particles to move in the direction of Particle 3, at least at first. This can be

seen in the figure below. After 100 iterations, the particles of travelled very close to the optimal solution. Their paths are

shown in the next two figures, Figure 4.3 and 4.4 from different distances.

Fig. 4.2 Fig 4.3 Fig 4.4

5 RES ULT & DISCUSS ION

The results of small size problem of 3*3 ie, 3 job on 3 machine, medium size problem of 6*6 ie, 6 job on 6 machine and

a large p roblem of 10*10 ie, 10 jobs on 10 machine were predicted and it is found to be 12, 55 and 1194 seconds

respectively. These results were obtained using particle swarm optimization (PSO) and it is better tha n results obtained

by Genetic Algorithm. The machine processing time, idle time and make span time are also shown with the help of Gantt

Chart.

6 CONCLUS ION

Particle swarm optimizat ion is an extremely simple algorithm that seems to be effective for optimi zing a wide range of

functions. We view it as a mid-level form of A -life or bio logically derived algorithm, occupying the space in nature

between evolutionary search, which requires eons, and neural processing, which occurs on the order of milliseconds.

Social optimization occurs in the time frame of ord inary experience - in fact, it is ordinary experience. In addition to its

ties with A-life, part icle swarm optimizat ion has obvious ties with evolutionary computation. Conceptually, it seems to

lie somewhere between genetic algorithms and evolutionary programming. It is highly dependent on stochastic processes,
like evolutionary programming.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 2,Issue 5, May -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2015, All rights Reserved 511

7 SCOPE OF FUTURE WORK

Much further research remains to be conducted on this simple new concept and paradigm. The goals in developing it

have been to keep it simple and robust, and we seem to have succeeded at that. The algorithm is written in a very few

lines of code, and requires only specification of the problem and a few parameters in order to solve it. Further
improvement can be done using hybrid optimization algorithms.

8 REFERENCES

[1] Bean, J., 1994. “Genetic algorithms and random keys for sequencing and optimizat ion,” Operations Research

Society of America (ORSA) Journal on Computing, 6, 154–160.

[2] Beasley J.E., 1990. “OR-Library : d istributing test problems by electronic mail”, Journal of the Operational

Research Society 41(11) pp1069-1072.

[3] Candido, M. A. B., Khator, S.K. & Barcia, R.M., 1998. “A genetic algorithm based procedure for more realistic

job shop scheduling problems,” International Journal of Production Research, 36(12), 3437–3457.

[4] Coello, C.A., Plido, G.T. & Lechga, M.S., 2004. “Handling mult iple objectives with particle swarm

optimization,” IEEE Transactions on Evolutionary Computation, 8 (3), 256–278.

[5] Esquivel, S.C., Ferrero, S.W. & Gallard, R.H., 2002. “Parameter settings and representations in Pareto -based

optimization for job shop scheduling,” Cybernetics and Systems: An international Journal, 33, 559–578.

[6] Fisher, H. & Thompson, G. L., 1963. Industrial Scheduling, Englewood Cliffs, NJ: Prentice-Hall.

[7] Garey, M. R., Johnson, D. S. & Sethi, R., 1976. “The complexity of flowshop and jobshop scheduling,”

Mathematics of Operat ions Research, 1, 117–129.

[8] Giffler, J. & Thompson, G. L., 1960. “Algorithms fo r solving production scheduling problems,” Operations

Research, 8, 487–503.

[9] Gonçalves, J. F., Mendes, J. J. M. & Resende, M. G. C., 2005. “A hybrid genetic algorithm for the job shop

scheduling problem,” European Journal of Operat ional Research, 167(1), 77–95.

[10] Jain, A.S. & Meeran, S., 1999. “Deterministic job-shop scheduling: Past, present and future,” European Journal

of Operational Research, 113, 390–434.

[11] Lei, D., 2008. “A Pareto arch ive particle swarm optimization fo r multi-objective job shop scheduling,”

Computers & Industrial Engineering, 54(4), 960–971.

[12] Liang Y.C., Ge, H.W., Zho, Y. & Guo, X.C., 2005. “A particle swarm optimizat ion -based algorithm for job-

shop scheduling problems,” International Journal of Computational Methods, 2(3), 419–430.

[13] Lourenço, H. R., 1995. “Local optimization and the job -shop scheduling problem,” European Journal of

Operational Research, 83, 347–364.

[14] Nowicki, E. & Smutn icki, C., 1996. “A fast taboo search algorithm for the job shop problem,” Management

Science, 42(6), 797–813.

