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Abstract:  The X-FEM attempts to improve computational challenges associated with mesh generation by not requiring 

the finite element mesh to conform to cracks, and in addition, provides using higher-order elements or special finite 

elements without significant changes in the formulation. The essence of the X -FEM lies in subdividing the model problem 

into two distinct parts: mesh generation for the geometric domain (cracks not included), and enriching the finite element 

approximation by additional functions that model the flaw(s) and other geometric entities. In the X-FEM there is no need 

for the remeshing, because the mesh is not changed as the crack growths and is completely independent of the location 

and geometry of the crack. The discontinuities across the crack are modeled by enrichment functions. In this 

presentation, the numerical simulation of 2D LEFM accomplished using the Extended Finite Element Method [XFEM] is 

discussed. XFEM has been recently accepted as a powerful tool for the numerical simulation of crack modelling in 

Fracture Mechanics. According to this approach a discontinuous function and the asymptotic crack -tip displacement 

functions are added to the conventional finite element formulation. These additional functions, commonly known as the 

enrichment functions are derived from the theoretical background of the problem.  XFEM is used i n the implementation 

of 2D static and crack propagation problems with plane stress condition. Various methods of XFEM are compared with 

each other and are found in good agreement with that of the benchmark solutions. Also problems on the plate with 

inclined edge cracks under tensile loading are investigated. 

Key Words: crack inclination, XFEM, mode-I loading, VCCT, cohesive elements 

I. INTRODUCTION 

The structural integrity of components used in nuclear power plants and aero -applicat ions are pushed to their limits 

through various kinds of damage. Small flaws/cracks in micro and macro levels orig inate in these components through 

various processes like welding, machin ing and loads acting on them. To  predict the effect of these cracks, d ifferent 

techniques are utilised today. XFEM is rather a new technique that enables unique advantages over the other ones. Many 

researchers have made an  attempt  to analyse the limits and advantages of XFEM through many solvers and the 

comparison of different methods used to formulate XFEM. Nicolas Moes et al., [1] is one of the earliest forms of XFEM. 

The authors formulated a finite element method for crack without re-meshing using the enrichment functions and the 

results were validated using numerical experiments. K. Sharma et al. [2] investigated the application to elasto-plastic 

problems and found significant difference in the results of LEFM and EPFM. They used the interaction integral approach 

to determine the SIFs and the Von-Mises yield criterion. E. Giner et  al. [3] considered the analysis of fretting fat igue 

problems using XFEM and concluded that accurate computations of SIFs are possible on relatively coarse meshes using 

this method. They also concluded that including the orientation of the crack becomes easier.  Casey L. Richardson et al. 

[4] investigated the crack propagation in brittle materials. They introduced a general algorithm for cutting triangulated 

domains and a quadrature rule and concluded that the method is comparatively faster and accurate. Gordana Jovicic et al. 

[5] developed an in-house code to model crack and compared the solutions with literature values and found them to be 

similar. They described the crack by means of the position  of the tip and level set of a vector valued mapping. Sachin  

Kumar et al. [6] simulated crack growth under mode-I loading using CTOA criterion and concluded that CTOD/CTOA is 

an effective criterion  for modelling effect ive crack growth in ductile materials. The used a proposed CTOA criterion and 

compared the results with J-R criterion. Sukumar et al. [7] modelled a quasi-static crack growth using XFEM and in  

particular, the array-allocation for enriched degrees of freedom, use of geometric-based queries for carrying assembly 

procedure for the discrete equations  discussed. They concluded that they revealed the relative ease by which 

discontinuous fields through the partition of unity framework can be incorporated within a standard finite element 

package. Sachin  Kumar et  al. [8] investigated a multi grid XFEM for the elasto -plastic simulat ion of bi-material 

interfacial cracks and concluded that the proposed approach provides excelled results and saves huge computation time. 

G. Bharadwaj et al. [9] examined the numerical simulation of bi -material interfacial crack problems using extended 

isogeometric analysis. They modelled the material discontinuity at the interface using signed distance function whereas 

Heaviside and asymptotic crack tip functions are used to  model the crack and concluded that the SIF obtained using 

XIGA are in good comparison with XFEM. Somnath Battacharya et al. [10] investigated the fatigue crack growth 
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simulations of FGM plate under cyclic thermal load by XFEM and concluded that the fatigue life of the materials is 

reduced considerably when these discontinuities are simultaneously present in the domain.  

II. NUMERICAL FORMULATION 

2.1 Governing Equations 

The governing equations of elasto-statics with internal discontinuities are briefly rev iewed and the equilibrium equation 

[10] is given as 

∇.σ + b = 0 in Ω                         (1) 

where, σ is the Cauchy stress tensor and b is the body force per unit volume.  

By applying Von-Mises yield criterion, the complete incremental stress -strain relation [11] is given as  

𝑑𝜀𝑖𝑗 =  
𝑑𝜎 𝑖𝑗

′

2𝐺
+

(1−2𝑣)

𝐸
𝛿𝑖𝑗𝑑𝜎𝑘𝑘 + 𝑑𝜆

𝜕𝑓

∂σij
                                (2) 

In Eq. (2) first two terms indicates elastic strain increment while last term indicate p lastic strain increment. Also the ter m 

dλ is proportionality constant termed as the plastic multiplier.  

f (σ) = K(k)                        (3) 

where, f is a function, K is a material parameter and k  is hardening parameter. Rearranging Eq. (3), we get 

F(σ, k) = f (σ) − K(k)                       (4) 

Differentiating Eq. (4) and using some definit ions we write  

𝑎𝑇𝑑𝜎 − 𝐴𝑑𝜆 = 0 where 𝑎𝑇 =
𝜕𝐹

𝜕𝜎
𝑑𝑘 and 𝐴 = −

1

𝑑𝜆
 
𝜕𝐹

𝜕𝑘
𝑑𝑘                                  (5) 

The vector a is termed as flow vector. Eq. (2) can be written as 

𝑑𝜀 =  𝐷 −1𝑑𝜎+ 𝑑𝜆
𝜕𝑓

𝜕𝜎
 and 𝑑𝜆 =

1

 𝐴+𝑎𝑇𝐷𝑎 
𝑎𝑇𝐷𝑑𝜀  

                                                                                            (6) 

where, D is the usual matrix of elastic constants and. An elasto-plastic incremental stress-strain relat ion is obtained as 

𝑑𝜎 = 𝐷𝑒𝑝 𝑑𝜀 where 𝐷𝑒𝑝 = 𝐷 −
𝑑𝐷𝑑𝐷

𝑇

𝐴+𝑑𝐷
𝑇𝑎
𝑑𝐷
𝑇 = 𝑎𝑇𝐷              (7) 

Here the yield function and plastic potential function are identical (associative flow rule) thus he elasto -plastic 

constitutive matrix D becomes symmetric. However when yield function isdifferent than plastic potential function (non -

associative flow rule), the elasto-plastic constitutive matrix 𝐷𝑒𝑝  becomes non-symmetric. 

2.2 XFEM Approximation for Cracks  

For 2-D crack modeling, the enriched displacement trial and test approximat ion [10,11] is written in general form as  

𝑢ℎ  𝑥 =  𝑁𝑖 𝑥 

 
 
 
 
 

𝑢𝑖 + 𝐻 𝑥 𝑎𝑖     
𝑖∈𝑛𝑟

+  𝛽𝛼  𝑥 𝑏𝑖
𝛼

4

𝛼=1         
𝑖∈𝑛𝐴  

 
 
 
 𝑛

𝑖=1

 

                         (8) 

where, 𝑢𝑖  is a nodal displacement vector associated with the continuous part of the FE solution, 𝑎𝑖  is the nodal enriched 

DOF associated with H (x) , and H (x) is the discontinuous Heaviside function, defined for those elements, which are 

completely cut by the crack which takes the value +1 on one side and -1 on other side of d iscontinuity. n is the set of all 
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nodes in the mesh, 𝑛𝑟  is the set of nodes of elements which are completely cut by  the crack and 𝑛𝐴  is the set of nodes of 

elements which are partially cut by the crack. 𝑏𝑖
𝛼  is the nodal enriched DOF vector associated with crack tip enrichment 

𝛽𝛼 𝑥 . 𝛽𝛼 𝑥  is the asymptotic crack tip enrichment functions and are defined as 

𝛽𝛼  𝑥 =  𝛽1 ,𝛽2 ,𝛽3 ,𝛽4
 =  𝑟𝑘 cos

𝜃

2
,  𝑟𝑘 sin

𝜃

2
,  𝑟𝑘 cos

𝜃

2
sin𝜃 ,  𝑟𝑘 sin

𝜃

2
sin𝜃  

                                                                                            (9) 

where r and θ are the local coordinates of the crack tip. For LEFM enrichment functions  k  = 0.5, and for EPFM 

enrichment functions 𝑘 = 1 1 + 𝜂 , where η is the hardening exponent that depends on material.  

If 𝑥 𝑖 is the node of interest then Eq. (8) can be written as: 

𝑢ℎ  𝑥 =  𝑁𝑖 𝑥 

 
 
 
 
 

𝑢𝑖 +  𝐻 𝑥 − 𝐻 𝑥 𝑖  𝑎𝑖           
𝑖∈𝑛𝑟

+   𝛽𝛼 𝑥 − 𝛽𝛼  𝑥 𝑖  𝑏𝑖
𝛼

4

𝛼=1               
𝑖∈𝑛𝐴  

 
 
 
 𝑛

𝑖 =1

 

                         (10) 

In Eq. (10), the difference between the values of the enrichment function at the evaluation point (Gauss point in the 

present simulations) and nodal point is considered. This modification also preserves the partition of unity property of the 

shape function. 

2.3 XFEM Formulation for a Crack  

For a crack, the incremental matrices, K and f are obtained using approximation function [11] defined by Eq. (10) as  

K𝑖𝑗
𝑒 =  

𝐾𝑖𝑗
𝑢𝑢 𝐾𝑖𝑗

𝑢𝑎 𝐾𝑖𝑗
𝑢𝑏

𝐾𝑖𝑗
𝑎𝑢 𝐾𝑖𝑗

𝑎𝑎 𝐾𝑖𝑗
𝑎𝑏

𝐾𝑖𝑗
𝑏𝑢 𝐾𝑖𝑗

𝑏𝑎 𝐾𝑖𝑗
𝑏𝑏

                                                 (11) 

f ℎ =  f𝑖
𝑢  f𝑖

𝑎  f𝑖
𝑏1  f𝑖

𝑏2  f𝑖
𝑏3  f𝑖

𝑏4 
𝑇

                                            (12) 

The sub-matrices and vectors that appear in the foregoing equations are given as: 

K𝑖𝑗
𝑟𝑠 =   B𝑖

𝑟  𝑇CBj
sℎ𝑑Ω where, r, s = u, a, b                     (13) 

f𝑖
𝑢 =  𝑁𝑖b𝑑Ω +  𝑁𝑖t 𝑑ΓΓt

Ω𝑒

Ω𝑒                                            (14) 

f𝑖
𝑎 =  𝑁𝑖 𝐻 x − 𝐻 x𝑖   b𝑑Ω +  𝑁𝑖 𝐻 x − 𝐻 x𝑖   t 𝑑Γ

Γt

Ω
𝑒

Ω𝑒

 

                                                                                          (15) 

f𝑖
𝑏𝛼 =  𝑁𝑖𝛽𝛼  x −  x𝑖  b𝑑Ω +  𝑁𝑖  x −  x𝑖   t 𝑑Γ

ΓtΩ𝑒

 

where α = 1,2,3,4                      (16) 

where 𝑁𝑖are finite element shape function, B𝑖
𝑢 ,B𝑖

𝑎 , B𝑖
𝑏  and B𝑖

𝑏𝛼  are the matrices of shape function derivatives. 

2.4 Computation of Stress Intensity Factors  

The interaction integral is an effective tool for ext racting the mixed-mode SIFs [11]. For two independent equilibrium 

states of a cracked body, the interaction integral is given as 
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𝑀
 1,2 =   𝜎𝑖𝑗

(1) 𝜕𝑢𝑖
(2)

𝜕𝑋1

+ 𝜎𝑖𝑗
(2) 𝜕𝑢𝑖

(1)

𝜕𝑋1

−𝑊
 1,2 𝛿1𝑗  

𝐴

𝜕𝑞

𝜕𝑋𝑗
𝑑𝐴 

                                                                                          (17) 

where 𝑊
 1 ,2  is the mutual strain energy 

𝑊
 1 ,2 =

1

2
 𝜎𝑖𝑗

(1)
𝜀𝑖𝑗

(2)
+ 𝜎𝑖𝑗

(2)
𝜀𝑖𝑗

(1) = 𝜎𝑖𝑗
(1)
𝜀𝑖𝑗

(2)
= 𝜎𝑖𝑗

(2)
𝜀𝑖𝑗

(1)
                                     (18) 

and q is given by 

𝑞 =  1−
2 𝑋 

𝑐
  1−

2  𝑦 

𝑐
                                                     (19) 

Using the Eq. (17), the SIF values calculated from following equation  

𝑀
 1,2 =

2

𝐸′
 𝐾𝐼

(1 )
𝐾𝐼

(2)
+ 𝐾𝐼𝐼

(1)
𝐾𝐼𝐼

(2 )                                    (20) 

2.5 Criteria for Crack Growth 

The maximum principal stress criterion [12] postulates that the crack growth occurs in a d irection perpendicular to the 

maximum principal stress. Thus, at each crack tip, the locald irection of crack growth 𝜃𝑐  is determined by the condition 

that the local shear stress is zero, that is  

𝐾𝐼 sin𝜃𝑐 + 𝐾𝐼𝐼  3 cos 𝜃𝑐 − 1 = 0                                    (21) 

Solution of this equation gives 

𝜃𝑐 = 2 tan−1  
𝐾𝐼− 𝐾𝐼

2 +8𝐾𝐼𝐼
2

4𝐾𝐼𝐼
                                              (22) 

According to this criterion, the equivalent mode-I SIF is 

𝐾𝐼𝑒𝑞 = 𝐾𝐼cos 3  
𝜃𝑐

2
 − 3𝐾𝐼𝐼 cos 2  

𝜃𝑐

2
 sin 

𝜃𝑐

2
                    (23) 

This equivalent stress intensity factor is useful in the unstable fracture criterion i.e. 𝐾𝐼𝑒𝑞 < 𝐾𝐼𝐶  where, 𝐾𝐼𝐶  is the crit ical 

value of mode-I stress intensity factor. 

III. NUMERICAL S IMULATION 

3.1 Inclined Centre Crack Static 

A rectangular plate of 100 mm × 200 mm with a centre crack of length a = 30 mm with 30 degree inclined with 

horizontal is taken for the simulat ion. The tensile load of σ = 100 N/mm
2
 is applied at the top edge of the plate and 

bottom edge is constrained as shown in Figure 1. The material of the plate is assumed as homogeneous and isotropic with 

E = 200 000 N/mm
2
 and Poisson ratio 0.3. A uniform mesh of 30 by 60 nodes is used in this simulation.  

 

Fig. -1: Inclined Centre Crack 
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Fig. -2: Variation of SIF’s with crack angle  

Table 1 indicates values of SIF’s for different crack angle from XFEM simulations and analytical results and there 

comparison shown in Figure 2. Analytical SIF's are calcu lated by [12]  

𝐾𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 = 𝑓𝜎 𝜋𝑎                                                        (24) 

where, 

𝑓 = 1 + 0.128 𝑎 𝐿  − 0.288 𝑎 𝐿  2 + 1.523 𝑎 𝐿  3                                                  

𝐾𝐼 𝜃𝑐  = 𝐾𝐼 0 cos 2 𝜃𝑐                                                        (25) 

𝐾𝐼 𝜃𝑐  = 𝐾𝐼 0 cos 𝜃𝑐  sin 𝜃𝑐                                            (26) 

where 𝜃𝑐  is crack angle with respect to horizontal.  

Table -1 : Variation of Mode-I and Mode-II stress intensity factors with crack inclination 

Cra

ck 

Ang

le 

𝑲𝑰  

Ana

lytic

al 

𝑲𝑰  

XFE

M 

%  

Err

or 

𝑲𝑰𝑰  

Ana

lytic

al 

𝑲𝑰𝑰  

XFE

M 

%  

Err

or 

30 
17.1

536 

17.3

090 

-

0.90

5 

9 
9.54

25 

3.64

7 

40 
13.4

215 

13.6

290 

-

1.54

6 

11 
10.9

280 

2.96

5 

50 
9.44

99 

9.70

51 

-

2.70

0 

11 
11.0

407 

1.96

5 

60 
5.71

7 

5.88

01 

-

2.83

8 

9.90

36 

9.73

83 

1.66

9 

3.2 Inclined Edge Crack Propagation (Quasi-static) 

A rectangular p late of 100 mm × 200 mm with an  edge crack of length ao = 20 mm with  -40 degree inclined is taken for 

the simulation. The tensile load of σ = 40 N/mm is applied at  the top edge of the p late and bottom edge is constrained as 

shown in Figure 3. The material of the plate is assumed as homogeneous and isotropic with E = 74000 N/mm
2
 and 

Poisson ratio 0.3 [11]. A uniform mesh of 20 by 40 nodes is used in this simulation. Crack incremented by 2 mm after 

each step. Crack is propagated either crack length is 60 mm or 𝐾𝐼𝐶  less than 𝐾𝐼𝑒𝑞 . 
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Fig. -3: Inclined Edge Crack 

 

Fig. -4: XFEM Crack path for the edge crack 

3.3 Edge  Crack (Straight) 

A plate with an edge crack of length a = 30 mm is taken for simulat ion. The tensile load of σ = 200 N/mm is applied at 

the top edge as shown in Figure 5. A uniform mesh of 30 by 60 nodes is used. The SIFs variation for LEFM and EPFM 

against crack length is presented in Figure 6. 

 

Fig. -5: Edge crack with dimensions 
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Fig. -6: Variation of SIF’s with crack length  

3.4 Inclined Centre Crack Propagation (Quasi-static) 

A rectangular plate of 100 mm × 200 mm with a centre crack of length a = 30 mm with 30 degree inclined is taken for 

the simulation. The tensile load of σ = 100 N/mm is applied at the top edge of the plate and bottom edge is constrained. 

The material of the plate is assumed as homogeneous and isotropic with E = 200 000 N/mm
2
 and Po isson ratio 0.3. A  

uniform mesh of 30 by 60 nodes is used in this simulat ion. Crack incremented by 3 mm after each step. Crack is 

propagated either crack length is 50 mm or 𝐾𝐼𝐶  less than 𝐾𝐼𝑒𝑞 . Table 2 indicates the values of SIF’s at left and right crack 

tip for inclined centre crack. 

Table -2 : The values of SIF’s at left and right crack t ip for inclined centre crack  

Cr

ac

k 
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op. 

ste

p 

𝑲𝑰𝑳

 

XF

E

M 

𝑲𝑰𝑰𝑳  
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E

M 

𝑲𝑰𝒆𝒒𝑳

 

XF

E

M 

𝜽𝑪𝑳  

𝑲𝑰𝑹
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E

M 

𝑲𝑰𝑰𝑹 

XF

E

M 

𝑲𝑰𝒆𝒒𝑹

XF

E

M 

𝜽𝑪𝑹 

I 
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31 
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4 
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03 

-
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4 
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31 
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4 
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03 

-
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4 
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41 

-
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8 
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00 
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41 

-
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9 
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01 

0.4

1 
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99 

4.1

3 
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05 

-
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3 
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00 

4.2

2 
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06 

-

0.3

3 

IV 
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23 

-

4.1

4 
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08 

0.2

7 
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23 

-

4.1

5 

30.

09 

0.2

7 

V 
32.

69 

4.9

12 

33.

76 

-

0.2

9 

32.

70 

4.9
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32.

76 

-

0.2

9 
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-
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37.
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0.2
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IV. CONCLUS IONS  

 In this work, the analysis of static crack and crack growth problems has been carried out by XFEM. The crack is 

modeled  by enrichment functions using regular fin ite element mesh. The values of SIFs are obtained using domain  based 

interaction integral approach. From the results in third problems, it is clear that there is significant difference in the 

results of EPFM and LEFM. Moreover, these simulations show that XFEM can  be easily  extended to simulate elasto -

plastic crack growth problems. During the analysis, it is also noticed that the XFEM can easily and accurately simulate 

crack growth problems, thus it can be easily extended to 3-D simulation. 
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