Scientifi | of I F SIIF): 4.72 e-ISSN (0): 2348-4470
cientific Journal of Impact Factor (SJIF): 4. p-ISSN (P): 2348-6406

International Journal of Advance Engineering and Research
Development

"Emerging Technologies in the Computer World”, January -2017
Improved Distributed Query Processing
Prof. Shilpa Pimpalkar, Department of Computer Engineering, AISSMS’s IOIT

Prachi Bhonde®, Saylee Dalu?, Viraj Deshmukh?®, Tushar Shedge’
Computer Engineering, AISSMS’s 10IT

Abstract -- Systems like distributed message queue and stream processing platform are being used for scaling huge
number of partitions of data streams and on the commodity hardware, this data streams are having high velocity. API
used for programming by these systems is low level, so requires more coding which increases the maintenance

and learning time of the programmer. These systems don 't have the sufficient capability of querying in SQL like Hive,
Impala or Presto big data systems. Here we are defining the minimal extension set to standard SQL for manipulation and
querying of data streams. Streaming SQL have the prototype of above extensions. A tool for streaming SQL that compiles
streaming SQL into physical plans performed on Samza which is an open-source distributed stream processing
framework. Here we are comparing the performance of streaming SQL queries with similar Samza applications and
discussing the improvements in usability.

Keywords-Samza Sql, Streaming data, Apache Kafka, Apache Zookeeper, Apache Calcite, Yarn
ILINTRODUCTION

The architectures like Lambda and Kappa were time consuming. To overcome this problem proposed system has
capability to execute query in less time with distributed query processing. It will make work of hours in minutes. This
query processing model is a scalable and fault-tolerant SQL based streaming query engine implemented on top of
Apache Samza with support for interaction with non-streaming data sources. This project is used to explore a unified
framework which enables Kappa architecture style data processing pipelines based on well-known standard SQL. In this
proposed architecture apache Samza and Apache calcite provide core functionality. Samza provides developers with a
Java API similar to Map/Reduce for implementing streaming tasks, and a message serialization and deserialization API
called Serde API to support different message formats (tektite, Avro, JSON or Thrift). While regular Samza jobs read and
write to/from Kafka, Samza provides a separate Java API to plug in different input and output systems. A high-level view
of Samza architecture. The features of Samza discussed here are available for proposed model to utilize it for executing
streaming SQL queries. Samza comes with a built-in YARN client for submitting Samza jobs to a YARN cluster, and
apache Samza job has an application master to perform input partition assignments and task scheduling. The Samza
application master also takes care of fault tolerance. A query is a Samza job with proposed system’s specific stream task
implementation that performs the computation described in the query.

I1.PROBLEM STATEMENT

The distributed SQL query engines have been available for Big Data, we still lack support for SQL-based stream
querying capabilities in distributed stream processing systems. In this system, we identify a set of requirements and
propose a standard SQL based streaming query model for fast processing of data.

IHLLLITRATURE REVIEW

Milinda Pathirage [1] Technologies such as distributed message queues and streaming processing platforms that can scale
to thousands of data stream partitions on commodity hardware are a response. Programming API provided by the
previous systems are often low-level. That will increase programmers overhead to maintain code and learn new coding
standards/syntaxes. Also there is lack of SQL querying capabilities which are popular on Big Data Systems. Here they
are defining minimal set of extensions to standard SQL. It will support streaming queries.

Dmitry Namiot [2] This paper’s goal is to provide a quick introduction and survey of the technical solutions for big data
streams processing. In this survey, Machine to Machine communications, sensors data in Internet of Things as well as
time series data processing. They have discussed the basic elements behind data streams processing. Existing technical
solutions for implementation of data stream processing are also discussed.

Oscar Boykin [3] Summing bird is an open-source domain-specific language. It is implemented in Scala and designed to
integrate online and batch MapReduce computations in a single framework. Hadoop can operate efficiently for batch
processing and Storm for online processing. Summingbird can operate in a hybrid processing mode i.e. it can combine

@IJAERD-2017, All rights Reserved 7



International Journal of Advance Engineering and Research Development (IJAERD)
"E.T.C.W”, January -2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406.

batch as well as online processing results. It imposes constraints on type of aggregations that can be performed, but these
constraints are not found restrictive for broad range of analytics tasks at Twitter.

Supun Kamburugamuve [4] There is huge number of applications through which large amount of data generated in
external environments is stored on servers for real time processing. These applications includes stock trading, sensor
based monitoring, web processing, network monitoring and so on. This data generated from various sources can be seen
as stream of events or tuples. In stream based applications data is handled as sequence of event tuple.

Qian Lin [5] In this paper they have proposed a noval model for stream joins, called join-biclique. It uses large cluster as
bipartite graph. Join-biclique has several advantages over state of the art techniques such as memory efficiency, elasticity
and scalability. These are essential features for building scalable and efficient streaming systems. Depending on join-
biclique they have developed scalable distributed stream join system called BiStream. It supports full history joins,
window join and also online data aggregation.

Mariam Kiran [6] Paper combines ideas from database management, cost models, query management and cloud
computing to present a general architecture that could be applied in any given scenario where affordable online data
processing of Big Datasets is needed. The results showcase a reduction in cost and argue benefits for performing online
analysis and anomaly detection for sensor data.

Leonardo Neumeyer [7] S4 is a general-purpose, distributed, scalable, partially fault-tolerant, pluggable platform that
allows programmers to easily develop applications for processing continuous unbounded streams of data. We show that
the S4 design is surprisingly flexible and lends itself to run in large clusters built with commaodity hardware.

Matei Zaharia [8] This paper says that big data applications should act on real time data. Also these applications should
be fault tolerant and scalable as we are using them on larger scales. They should handle stragglers automatically. But
distributed systems at that time were not fault tolerant and also recovery was too expensive or time consuming. Also they
were not handling stragglers so new model was proposed called D-stream i. e. discretized stream that overcome these
challenges.

Daniel J. Abadi [9] This paper tells about Aurora’s basic processing model and architecture. It is new system for
monitoring applications to manage data streams. There are various types of monitoring applications and variety of data is
being produced from them. For management of this data Aurora architecture and stream oriented set of operators are
discussed.

Arvind Arasu [10] In this paper CQL (Continuous Query Language) is discussed which is supported by STREAM
(Stanford Data Stream Management System). CQL is SQL based query language that support querying on data streams
as well as updatable relations. They begun by presenting an abstract semantics that relies only on black box mappings
among streams and relations. From these mappings we define a precise and general interpretation for continuous queries.

IV.PROPOSED SYSTEM

In our system we provide the sgl query as a input for system, system first interact with SamzaSQL using Sqline library
the query planner convert the query into the tuple format and send to the input for sibling window operation logic. Each
tuple is having some timestamp, by using that timestamp system identify time interval the omits the tuple and send the
result to output window.

‘ SamzaSQL Shell }H Samza YARN Client ‘

‘ Calcite Model HSchema Registry‘ ‘ Zookeeper ‘

SamzaSQL Job

Fig. Streaming SQL Architecture

Figure illustrates out proposed system i.e. Streaming SQL architecture. Users interact with Streaming SQL through a
special SQL shell build using SqlLine 3 library and a custom Streaming SQL specific JDBC driver implementation.
SamzaSQL shell is a command line application that runs on users’ desktop. SamzaSQL JDBC driver wraps the query
planner that converts a streaming SQL query to a Samza job containing one or more SamzaSQL tasks. Query planner
uses Samza YARN Client to submit streaming jobs to a YARN cluster. Query planner uses Calcite model files described

@IJAERD-2017, All rights Reserved 8



International Journal of Advance Engineering and Research Development (IJAERD)
"E.T.C.W”, January -2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406.

in JSON format and Kafka Schema Registry to retrieve necessary metadata for query planning and uses Zookeeper to
share metadata and configuration information between query planner and SamzaSQL streaming tasks. Information shared
via Zookeeper

includes streaming SQL query to use during task query planning, Schema Registry location, message schema details, etc.
We are also planning to utilize Zookeeper to store SamzaSQL shells session information including running queries, and
including input/output streams and the status of the query.

V.CONLUSION
Streaming SQL is SQL implementation on top of Apache Samza which utilize standard SQL as much as possible by
moving streaming related details away from the language layer to the physical execution layer. Streaming SQL
demonstrates the advantages of having access to check pointed local storage and concepts such as bootstrap streams in a
stream processing framework.

REFERENCES

[1] Milinda Pathirage, Julian Hyde, Yi Pan and Beth Plale “SamzaSQL: Scalable Fast Data Management with
Streaming SQL”, 2016 IEEE

[2] Dmitry Namiot, “On Big Data Stream Processing”, vol. 3, no. 8, 2015

[3] O. Boykin, S. Ritchie, I. O’Connell, and J. Lin, “Summingbird: A framework for integrating batch and online
Mapreduce computations,” Proceedings of the VLDB Endowment, vol. 7, no. 13, 2014.

[4] Supun Kamburugamuve, “Survey of Distributed Stream Processing for Large Stream Sources”, For the PhD
Qualifying Exam 2013

[5] Qian Lin, Beng Chin Ooi, Zhengkui Wang, Cui Yu, “Scalable Distributed Stream Join Processing”, 2015

[6] Mariam Kiran, Peter Murphy, Inder Monga, Jon Dugan, Sartaj Singh Baveja “Lambda Architecture for Cost-
effective Batch and Speed Big Data processing”, 2015 IEEE International Conference on Big Data

[7] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed stream computing platform,” in Data Mining
Workshops (ICDMW), pp. 170-177, International Conference on. IEEE, 2010.

[8] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, Ion Stoica, “Discretized Streams:
Fault-Tolerant Streaming Computation at Scale”, Nov. 3-6, 2013

[9] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S.
Zdonik, “Aurora: a new model and architecture for data stream management,” The VLDB Journal-The
International Journal on Very Large Data Bases, vol. 12, no. 2, pp. 120-139, 2003.

[10] A. Arasu, S. Babu, and J. Widom, “The cql continuous query language: Semantic foundations and query
execution,” The VLDB Journal, vol. 15, no. 2, pp. 121-142, Jun. 2006

@IJAERD-2017, All rights Reserved 9



