
National Conference on Recent Research in Engineering and Technology (NCRRET -2015)

International Journal of Advance Engineering and Research Development (IJAERD)

e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

An Approach for Improving the Efficiency of Software Team by Continuous

Evaluation of Software Development

Arpit Mehta
1
, Yoothika Patel

2

1
Asst.Professor in Computer Science Department at DJMIT Mogar

2
 Asst.Professor in Computer Science Department at DJMIT Mogar

Research Scholar CIIT Indore, Prof.CSE Dept CIIT INDORE ,Asst. Prof. & Head, CSE Dept

ABSTRACT
Accurate software cost and schedule estimations are essential specially for large software
projects. However, once the required efforts have been estimated, little is done to recalibrate and

reducethe uncertainty of the initial estimates. To address this problem,we have developed and
used a framework to continuously monitor the software project progress and readjust the
estimated effort utilizing the Constructive Cost Model II (COCOMO II) and the Unified Code

Count Tool. As a software project progresses, we gain more information about the project itself,
which can then be used to assess and re estimate the effort required to complete the project. With

more accurate estimations and less uncertainties, the quality and goal of project outcome can be
assured within the available resources. The paper thus also provides and analyzes empirical data
on how projects evolve within the familiar software “cone of uncertainty.”

Categories and Subject Descriptors

 [Management]: Cost estimation, Life cycle, Time estimation

General Terms Management, Measurement, Economics

Keywords Cost Estimation, Uncertainty

1. INTRODUCTION

Having accurate estimations of the effort and resources required to develop a software project is

essential in determining the quality and timely delivery of the final product. For highly
precedented project and experienced teams, one can often use“yesterday’s weather” est imates of
comparable size andproductivity to produce fairly accurate estimates of project effort.More

generally, though, the range of uncertainty in effortestimation decreases with accumulated
problem and solutionknowledge within a “cone of uncertainty” de fined in [1] and calibrated to

completed projects in [2]. To date, however, there have been no tools or data that monitor the
evolution of a project’s progression within the cone of uncertainty.

Our goal is to develop a routine, semi-automated assessment framework that helps reduce
uncertainties of the software project estimation as the project progresses through its life cycle.

The assessment framework integrates the Unified Code Count tool (UCC) with the COCOMO II

National Conference on Recent Research in Engineering and Technology (NCRRET -2015)

International Journal of Advance Engineering and Research Development (IJAERD)

e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

estimation model to quickly generate information to analyze the team’s performance and
estimations. This is similar to the concepts of [10], which shows that frequent assessment of the
project status help improve the team as well as the final product of the project. We apply this

concept to assess the efforts spent on the project and compare with the current progress to predict
the effort required to complete the project. This information is then used to evaluate the current

project estimations and adjust the estimation parameters as necessary. This will eventually
enable the actual and estimated effort to converge. The assessment framework allows the team to
validate the direction of the project, while increasing the project understanding as well.

The key benefits of achieving a convergence between actual andestimated efforts are as follows:

• It allows the development team to improve planning andmanagement of project resources
and goals.

• It enables the product’s quality to be controlled closely.

• It helps the stakeholders to better understand the actualproject’s progress and status.

2. Problem and Motivation

Figure 1: The Cone of Uncertainty [2]

National Conference on Recent Research in Engineering and Technology (NCRRET -2015)

International Journal of Advance Engineering and Research Development (IJAERD)

e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

The main motivation behind the development of the assessment framework is derived from the
well-know software “cone of uncertainty” problem. Figure 1 shows the accuracy of software
sizing and estimation by phases. The level of estimation uncertainties is high during the initial

estimations due to lack of data and experience. As long as the projects are not reassessed or the
estimations not revisited, the cones of uncertainty are not effectively reduced [1].

2.1 Imprecise Project Scoping

When the projects begin with the initial overestimations, teams are required to re-negotiate with
the clients to either reduce the size of the projects or adjust the timeframe. On the other hand,

when a project underestimates the resources, it tends to overshoot the goals that the project can
achieve. Thus, the project’s quality suffers significantly or the project itself becomes
undeliverable due to insufficient resources.

2.2 Project Estimations Not Revisited

During the initial estimation for the software project to be developed, the teams often do not
have sufficient data to carefully analyze and perform the necessary predictions. This missing
information includes aspects that are specified in the COCOMO II cost drivers [2]. In most

cases, the project estimation turns into a constant value once the project enters the development
phase regardless of how well the project progresses or how capable the programmers actually

are. There is a significant number of uncertainties at the beginning of the project as there are
instability in requirements and there are many directions that the project can proceed on.

2.3 Manual Assessments are Tedious

The tasks of manually assessing the project progress are tediousand discouraging to the team due
to their complexities and theamount of effort required. In order to collect enough informationto
have a useful assessment data, the teams often need to performvarious surveys and reviews to

determine how well the teamperformed in previous iterations [10].

2.4 Limitations in Software Cost Estimation

Regardless of what software cost estimation technique is used, there is little that the technique
can compensate for the lack of information and understanding of the software to be developed.
As clearly shown in [1], until the software is delivered, there exists a wide range of software

products and costs that can turn into the final outcome of the software project. In addition to the
fact that the initial estimations lack the necessary information to achieve accurate estimates as

mentioned in section 2.2, the software design and specifications are prone to changes throughout
the project life cycle as well, especially in an agile software engineering environment.

3. Related Work
The most thorough and balanced coverage of software estimation methods is “Estimating
Software-Intensive Systems”[14]. More recent updates, including discussions of expert judgment

vs. parametric-model estimation strengths and weaknesses, are [8] and [9]. A good treatment of
agile estimation is [4].Early treatments of software estimation uncertainty include the PERT
sizing method in [12] and the wideband Delphi estimate distributions in [2] and the accuracy-vs.-

phase chart in [1],calibrated in [2], and termed the “cone of uncertainty” in [11].Most

National Conference on Recent Research in Engineering and Technology (NCRRET -2015)

International Journal of Advance Engineering and Research Development (IJAERD)

e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

commercial estimation models now include capabilities to enter input uncertainties, run a
number of random-sample Monte Carlo estimates, and produce a cumulative probability
distribution estimate of the probability that the actual cost will exceed a given budget [7].In the

aspect of software project tracking methods , a good early treatment is “Controlling Software
Projects” [5]. Tracking progress vs. estimated budget and schedules via Earned Value

Management (EVM) systems is covered well in [6].

4. Model

The framework that we developed introduces a semi-automated method to help rapidly assess the
project status and progress based on the effort spent and the number of SLOC. Figure 2provides

an overview of the assessment framework.

Figure 2: Assessment Framework Model

4.1 Effort Estimation

The assessment framework utilizes the COCOMO II estimation model to estimate the resources
required to complete a software development project. It takes the adjusted SLOC of each module

along with the necessary effort multiplier parameters and applies them to the COCOMO II
estimation model to generate actual efforts in PM, which can then be converted to number of

hours.

where:

- A = 2.94 (a constant derived from historical project data)
- Size is in KSLOC

National Conference on Recent Research in Engineering and Technology (NCRRET -2015)

International Journal of Advance Engineering and Research Development (IJAERD)

e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

- EM is the effort multiplier for the ith cost driver. The geometric product results in an overall
effort adjustment factor to the nominal effort.
- SF is the scale factor used to compensate for the economies or diseconomies of scale.

- NS stands for “nominal schedule”

4.2 Size Counting

The sizes of the projects are obtained using the Unified CodeCount tool (UCC) of which the
counting standards are based on [12]. The UCC tool provides a fully automated process to obtain

the number of SLOC. The tool takes a list of source code files as input and generates the number
of physical and logical SLOC as outputs, which are then fed to the COCOMO II formula. We

only take the number of logical SLOC as these are the lines of code that require real effort to
develop.
The main motivation behind the development of the assessment framework is derived from the

well-know software “cone of uncertainty” problem. Figure 1 shows the accuracy of software
sizing and estimation by phases. The level of estimation uncertainties is high during the initial

estimations due to lack of data and experience. As long as the projects are not re-assessed or the
estimations not re-visited, the cones of uncertainty are not effectively reduced [1],[12]. The UCC
tool provides a fully automated process to obtain the number of SLOC. The tool takes a list of

source code files as input and generates the number of physical and logical SLOC as outputs,
which are then fed to the COCOMO II formula. We only take the number of logical SLOC as

these are the lines of code that require real effort to develop.

4.3 Model Calculations

The framework’s inputs can be categorized into two types: static and dynamic inputs. The static
inputs are not frequently changed until the project meets the major milestones. These include the

SLOC sizes of each module, the COCOMO II parameters, and the requirements evolution and
volatility (REVL) for each module. The dynamic input needs to be updated for each assessment,

which is the estimated percent completed of each module. When the raw SLOCs are obtained
from the UCC tool, the SLOCs are readjusted with REVL to reflect the cost from requirements
evolution. The estimated total size and effort for each software module are calculated using these

formulas:

5. Analysis
We performed simulations of our assessment framework on two software projects from USC’s
software engineering course with24-week development timeframe. The versions of the source

code files submitted to the Subversion server at the end of each week were used as inputs to the
UCC tool to provide us with the data. The two projects were chosen for their similarities in

project

National Conference on Recent Research in Engineering and Technology (NCRRET -2015)

International Journal of Advance Engineering and Research Development (IJAERD)

e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

Figure 4: Simulation Result of Team B

 types, sizes, and complexities, which are e-service projects to develop web-based database

management systems using JSP technology. Both teams were closely involved in this process for
the simulation to reflect the reality as much as possible.

5.1 Overview of Results

The results of the assessment simulation on both projects show that the estimated and actual
efforts converge as the projects progress through their lifecycles.

Figure 3: Simulation Result of Team A

project (shown in the coarse-dotted line), on the other hand, converges to the required effort as

the estimations are revisited and adjusted during each assessment. Finally, the fine-dotted line
represents the effort estimation performed by the team at the beginning of the project. It is

interesting to observe the difference in the behavior of the “cone of uncertainty” between the two
teams. Team A overestimated the effort required to complete the project by over50%. Based on
our discussion with the team members, the main reason for their estimation error was due to the

fact that they were pessimistic about the developers’ capabilities and assumed the project to be
more complicated than it actually was. On the other hand, Team B underestimated their required

effort by over 18%due to the lack of experience in identifying the actual effort that would be
required to develop certain modules. Moreover, the developers were not experienced with the
development language, JSP, so they were not aware of the complexities that could potentially

occur during the project. Based on the simulation, both teams demonstrated the same

National Conference on Recent Research in Engineering and Technology (NCRRET -2015)

International Journal of Advance Engineering and Research Development (IJAERD)

e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

phenomenon where the gaps in the “cone of uncertainty” in effort estimation decreases
throughout the project lifecycle and converges at the end of the project.

5.2 Percentage of Estimation Errors

Figure 5 shows the rates of estimation errors for both teams throughout the 24 weeks of

development. Although we had hoped that the error rate would be smoother and more linear, the
end result clearly shows the improvement week by week. The reason that the error rates in
estimation error fluctuate as such is due to the fact that there are still discrepancies and lack

ofexperience in identifying the percent completeness of each module and of the project as a
whole. However, the reductions in error rates are significant compared to the initial estimates

done by the developers, thus, showing a much more accurate estimation when utilizing our
assessment framework.

Figure 5: Estimation Error Percentage

5.3 Estimated Overall Project Progress

Currently, a project’s overall progress is generally reported based on the initial estimates of the

project. Since the initial estimates are often inaccurate with either an overestimation or
underestimation, the actual project progress cannot be determined accurately.

Figure 6: Project Progress Percentage

Figure 6 shows the estimated overall project progress for both teamsthroughout the 24 weeks of

development. The assessmentframework’s output can be represented as the overall

National Conference on Recent Research in Engineering and Technology (NCRRET -2015)

International Journal of Advance Engineering and Research Development (IJAERD)

e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

projectprogress which is useful to all critical stakeholders in order to adjustproject plan. The
project progress is calculated by using the effortconverted from SLOC developed and comparing
it against theadjusted estimated effort. As the assessment allows the estimationsto become more

and more accurate as the project moves forward,the project progress becomes more realistic as
well. This allows allthe success critical stakeholders to observe the actual progress of theproject

and monitor to see whether the project can be delivered on time or not.

6. Conclusions and Future Work
We have presented a novel framework for performing continuousassessments on the project

progress in order to produce betterestimates. The assessment framework utilizes an automated
codecount tool, UCC, to generate inputs to our framework which can beconverted into e ffort
using the COCOMO II model. As theassessments are performed, the COCOMO II parameters

areevaluated and updated in order to yield better predictions based onthe current situation.
We performed a simulation of our assessment framework on datafrom two so ftware development

projects taken from USC’s softwareengineering course. As shown in our analysis, the results of
thesimulation have shown significant improvements in estimatingproject resources with
significant reduction in estimation errors asthe project progresses through its life cycle. It can

thus be concludedthat the continuous assessment can help predict the efforts which arerequired
to achieve similar projects with fixed schedules. Again, thisconclusion is only suggestive vs.

definitive for other classes of applications. It is interesting to note that, relative to skeptical
statements that onlythe optimistic lower part of the Cone of Uncertainty is ever visited,
in this case, one of the projects underestimated and had to increaseeffort, while the other project

found ways to satisfy the client usingless effort. This is a not a large sample size, but shows that
the upperpart of the Cone of Uncertainty does exist.Our primary target for future work is to

develop a tool to fullysupport the framework by integrating both the UCC tool and theCOCOMO
II calculation model. We will then observe the effects on project performance as well as
determine the frequencies of the assessment that will yield the most effective results, or the sweet

spot of our assessment framework. Furthermore, we will experiment our assessment framework
on projects of large scale and of different types in order to observe the economies of scale and

the prediction accuracy of the framework as the nature of the projects changes.
Finally, we will apply the concepts of value-based software engineering practice into our
assessment model by taking the priority of the requirements. As each software module has

different levels of importance and criticality, they should not be treated as equal. Weights should
be applied to each module with respect to the priority of the software requirements. This will

affect the estimation and percent completion as software modules with higher priority and
criticality should yield higher percentage of completion than those with lower priorities.

7. References
[1] Boehm, B. “Software Engineering Economics”. Prentice-Hall,1981.

[2] Boehm, B., Abts, C., Brown, A. W., Chulani, S., Clark, B. K.,Horowitz, E., Madachy, R.,
Reifer, D. J., and Steece, B.Software Cost Estimation with COCOMO II, Prentice-Hall,2000.

[3] Boehm, B., Egyed, A., Port, D., Shah, A., Kwan, J., andMadachy, R. "Using the WinWin
Spiral Model: A CaseStudy," IEEE Computer, Volume 31, Number 7, July 1998, pp.33-44 (usc-
csse-98-512)

[4] Cohn, M. Agile Estimating and Planning, Prentice-Hall, 2005

National Conference on Recent Research in Engineering and Technology (NCRRET -2015)

International Journal of Advance Engineering and Research Development (IJAERD)

e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

[5] DeMarco, T. Controlling Software Projects: Management,Measurement, and Estimation,
Yourdon Press, 1982
[6] Fleming, Q. W. and Koppelman, J. M. Earned Value ProjectManagement, 2nd edition,

Project Management Institute, 2000
[7] Galorath, D. and Evans, M. Software Sizing, Estimation, andRisk Management, Auer-bach,

2006
[8] Jorgensen, M. and Boehm, B. “Software Development EffortEstimation: Formal Models or
Expert Judgment?” IEEESoftware, March-April 2009, pp. 14-19

[9] Jorgensen, M. and Shepperd, M. “A Systematic Review ofSoftware Development Cost
Estimation Studies,” IEEE Trans.Software Eng., vol. 33, no. 1, 2007, pp. 33-53

[10] Krebs, W., Kroll, P., and Richard, E. Un-assessments reflections by the team, for the team.
Agile 2008 Conference
[11] McConnell, S. Software Project Survival Guide, MicrosoftPress, 1998

[12] Nguyen, V., Deeds-Rubin, S., Tan, T., and Boehm, B. "ASLOC Counting Standard,"
COCOMO II Forum 2007
[13] Putnam L. and Fitzsimmons, A. “Estimating Software Costs,Parts 1,2 and 3,” Datamation,

September through December1979
[14] Stutzke, R. D. Estimating Software-Intensive Systems, PearsonEducation, Inc, 2005.

