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Abstract — The prediction of process performance is essential to select the control parameters for obtaining the goals of 

production. Ultrasonic machining is popular material removal process brittle materials like glass, ceramics etc. Glass 

Fiber Reinforced Plastic (GFRP) is a widely used engineering material in number of engineering applications. 

Experiments are conducted to obtain data regarding the effect of process parameters on ultrasonic drilling of GFRP. 

Amplitude, pressure and thickness of the glass sheet are chosen as control parameters. Three levels of each of these 

parameters are selected giving 3
3
 = 27 trials. Material removal rate (MRR), overcut (OC), taper produced on the drilled 

holes, delamination on top and bottom surfaces are determined as response parameters. Artificial Neural Network 

(ANN) model is developed to capture relationship between control and response parameters as a predictive tool to 

predict the performance of the process. 
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I. INTRODUCTION 

Ultrasonic machining offers a solution to the problem of brittle materials increasing complex operations to 

provide intricate shapes and workpiece profiles. Ultrasonic machining process is non-thermal, non-chemical, creates no 

change in the microstructure, chemical or physical properties of the workpiece and offers virtually stress-free machined 

surfaces. Ultrasonic machining is therefore used extensively in machining hard and brittle materials that are difficult to 

cut by other conventional methods [1]. The nature of ultrasonic process is so complex that the selection of the process 

parameters for this process requires a lot of experience and understanding and in many cases a lot of preliminary trials 

are essential to establish the correct parameters. ANN modeling encompasses very sophisticated techniques capable of 

modeling complex functions and processes. Advantage of neural networks lies in their ability to represent both linear and 

nonlinear relationships as well as having the capability of learning by example. For processes that have non-linear 

characteristics such as those found in manufacturing processes, traditional linear models are simply inadequate. In 

comparison to traditional computing methods, neural networks offer a different way to analyze data and to recognize 

patterns within that data by being generic non-linear approximations. Artificial Intelligence (AI) techniques seem to be 

best solution for prediction for multivariable controlled systems [2].  

Experiments are conducted to perform ultrasonic drilling on GFRP and data is generated for development of 

ANN model. Full factorial experiments are conducted for ultrasonic drilling of GFRP and data obtained as an outcome of 

experiments is used for developing and validating ANN model. 

 

II. ULTRASONIC DRILLING EXPERIMENTS ON GFRP 

A full factorial design of experiment with replication is used with three control factors – amplitude, pressure and 

thickness of the GFRP sheet. Three values selected for the low, medium and high level for each of the control parameters 

as listed in Table 1. The amplitude is varied in terms of percentage of amplitude delivered at full power by the converter. 

 
Table 1. Parameters and their Levels 

 

Amplitude Pressure GFRP Thickness  

A1 = 70% P1 = 1 bar t1 =1.3 mm 

A2 = 80% P2 = 2 bar t2 =2 mm 

A3 = 90% P3 = 3 bar t3 = 2.3 mm 

 
Material removal rate (MRR), overcut (OC), taper and delamination on top and bottom surfaces are selected as 

response parameters. Conical sonotrode is designed and manufactured as amplitude of propagated sound wave is 

inversely proportional to the cross-sectional area in solids. The shape of the tool is obtained at the end of the sonotrode 

itself. An approximate gain of 3 is selected for the sonotrode. The design of the sonotrode is carried out using CARD 

(Computer Aided Resonator Design) software.  

 

The detailed procedure followed for ultrasonic blanking is described as under: 

1) Select glass sheet and measure its weight. 
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2) Melt the mounting wax in beaker and pour it in petri-dish. 

3) Place the GFRP sheet having aluminium foil attached at its bottom in wax and allow curing. 

4) Prepare slurry having 27% concentration. 

5) Securely tighten the sonotrode.  

6) Start slurry circulation and adjust the flow. 

7) Set the control parameters. 

8) Start vibrations using foot switch. 

9) Start machining holding petri-dish in hand.  

10) Machining is completed when through cut is obtained. 

11) Record machining time using stopwatch. 

12) Switch off slurry pump and clean the blank by washing it in Acetone. 

13) Remove workpiece from petri-dish.  

14) Measure the weight of cut blank and slide. 

The material removed on weight basis is obtained by subtracting the sum of mass of blank and mass of slug 

from the mass of GFRP sheet before machining. The MRR is then obtained in terms of volumetric material removal rate 

by taking density of GFRP. The top and bottom diameters of each drilled hole were measured using 0.1 micron accuracy 

travelling microscope four times by changing the position. Average of these values was taken as the value for top and 

bottom diameters. The value of OC was determined by halving the difference between larger of the top and bottom hole 

diameters and the tool diameter which is 8 mm. Taper was obtained by dividing the difference between top and bottom 

diameters by the thickness. The delamination factor is measured by taking ratio of maximum diameter of hole to sum of 

the diameter of tool and abrasive particle size The experimental results are listed in Table 2. 

Table 2 Experimental Results 
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III. ANN MODELING 

Among the various kinds of ANN approaches that exist, the back propagation learning algorithm, which has 

become the most popular in engineering applications, is selected for use in this study. Networks have one input layer, one 

or more hidden layer(s) and one output layer. To train and test the neural networks, input data patterns and corresponding 

targets are required. In developing ANN model, the data obtained by experimental tests for ultrasonic drilling of GFRP is 

utilized. The mathematical background, the procedures for training and testing the ANN and account of its history is 

available for details [4]. The amplitude, pressure and thickness of work are represented as input data while material 

removal rate, taper, overcut, top delamination factor (TOPDF) and bottom delamination factor (BOTTOMDF) are output. 

A number of architectures of feed forward back propagation type of neural network are tested for modeling of the 

ultrasonic drilling process parameters in this work. The procedure involved in developing neural network model for 

ultrasonic drilling is depicted  in Figure 1 

.  

Figure 1. ANN Modeling Procedure 

Decide the inputs to the ANN. 

This governs the number of cells in the input layer 

Decide the outputs desired from the ANN 
This governs the number of  

cells in the output layer 
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The steps listed in the flow chart for development of neural networks models in Figure 1 are applied to this case 

as indicated in Table 3 for decision of the inputs, outputs, number of hidden layers and number of cells in each hidden 

layer. The criteria for the termination of training selected are permissible error for training & validation sets and 

maximum number of cycles in training. For this case, the limiting value of maximum, minimum and average error is set 

as 2% and the permissible error for validation sets is specified as 5% of the target value. It is observed that for many 

attempts, the all errors are limited below 2% but not for all architectures. Some of them do not yield a trained network 

even after the 100000 number of training cycles. Thus, training stops when any one of the above criteria, namely, all 

errors being less than 0.05, all validation points within 0 5% of target values being completed. The learning rates and 

momentum are kept as 0.6 and 0.8 respectively to facilitate stable and quicker learning by larger variation in weights so 

that a larger set of weight values are explored within the number of learning cycles permitted. Beginning with a 3,11,5 

architecture and training parameters as described, the first architecture with single hidden layer is evaluated. It does not 

pass the error criteria till the end of prescribed 100000 cycles . Subsequently, following the strategy discussed in Figure 

1. the number of cells in the hidden layers are increased one at a time up to 15. Thereafter, ANN architectures with two 

hidden layers and three hidden layers are evaluated in a similar fashion. 

TABLE 3. Neural Network Modeling for Ultrasonic Drilling Process Modeling 

Network Type Feed Forward 

Input for the neural network model Amplitude, Pressure, Thickness 

Number of nodes in input layer = 

Number of inputs to the neural network model 
3 

Output from the neural network model MRR, taper, OC, TOPDF, BOTTOMDF 

Number of nodes in output layer = 

Number of outputs from the neural network model 
5 

Initial Number of Hidden Layers 1 

Maximum Number of Hidden Layers 3 

Propagation Rule Weighted Sum Rule 

Activation Function Logistic Function 

Output Function Identity Function 

Learning Rule Back Propagation 

 

IV. RESULTS & DISCUSSION 

By principle of a trial and error ANN modeling is processed in terms of determining the most suitable 

architecture for a given system. The R test is one way of ascertaining the best network model. Another faster method is to 

compare the average or RMS error values. These values can be determined using standard formulae (Eqs. (i~iii)). 

Error% =
 Ae−AP  

Ae
                                                                             (i) 

Errorrms =   
1

N
 
Ae−AP

Ae
 
2

N
i=1                                                (ii) 

R =
1

N
 Ri =
N
i=1

1

N
 

Ae

AP

N
i=1                                    (iii) 

Network architectures with 25 different configurations are attempted for training and it is observed that the 

network architectures having one hidden layer could not be trained to meet the error limitations even with high number of 

cells. Eighteen different architectures are tested successfully and the results of training these networks are listed in Table 

4.  

It is observed from Table 4 that the value of R is closest to unity for 3-9-7-6-5 architecture.  Hence, the 

architecture 3-9-7-6-5 is chosen as the best representative model for this case. The 3-9-7-6-5 architecture and its error 

propagation during training are shown in Figure 2 and Figure 3 respectively. 
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Table 4 ANN Architecture Test Results 

 
  

 
Figure 2. ANN Model Architecture for 3.9,7,6,5 model 

Sr. No.
Model 

Structure

Avg. 

Error

Min. 

Error

Max. 

Error

Error 

RMS

No. of 

Cycle
R value RANK

1 3-11-5 19.6284 0.1613 93.7217 0.2712 100000 1.1280 14

2 3-12-5 17.3009 0.6700 78.1913 0.2306 1344 0.8815 12

3 3-13-5 15.6445 0.8750 47.0229 0.1986 14396 0.8840 11

4 3-14-5 20.6679 4.1067 70.0174 0.2511 1010 1.1515 17

5 3-15-5 15.9597 1.2063 43.0425 0.2106 1602 1.1532 18

6 3-6-6-5 15.2090 0.0393 41.2407 0.1866 100000 0.8929 6

7 3-6-7-6 23.8570 0.1467 58.6170 0.2836 100000 1.2838 24

8 3-7-7-5 15.1537 0.8094 73.5971 0.2147 42858 1.0770 3

9 3-8-7-5 21.6644 1.1875 50.1890 0.2676 4069 1.1098 7

10 3-7-8-5 11.8710 0.5704 40.9039 0.1499 1216 1.0591 2

11 3-8-8-5 16.7213 0.5391 45.1238 0.2036 2122 1.2067 21

12 3-8-9-5 17.4008 1.0309 38.2409 0.2089 946 0.8856 9

13 3-9-8-5 17.4702 0.9665 61.1024 0.2426 3127 0.8862 8

14 3-9-9-5 13.8688 0.6063 53.5935 0.1837 2499 0.8959 5

15 3-6-6-6-5 24.9829 1.5859 129.2783 0.3511 100000 1.1799 20

16 3-6-7-6-5 21.9431 0.0671 120.2870 0.3211 100000 1.1356 15

17 3-6-7-7-5 18.3722 0.5323 48.7270 0.2221 6663 1.2310 22

18 3-7-7-7-5 32.5930 1.9626 173.8261 0.4618 100000 1.2539 23

19 3-7-8-7-5 30.3915 1.0947 96.9913 0.3680 100000 1.3307 25

20 3-7-6-6-5 12.7229 0.8163 52.5191 0.1632 65745 1.0836 4

21 3-8-8-8-5 20.8929 1.2067 58.9826 0.2474 6061 1.1795 19

22 3-9-7-6-5 12.7625 0.3705 44.6036 0.1680 13457 1.0581 1

23 3-9-8-7-5 17.4958 0.9127 71.2435 0.2249 6249 1.1214 13

24 3-9-9-9-5 23.6770 0.5587 83.1800 0.3070 1025 0.8844 10

25 3-10-10-10-5 18.9548 1.0154 63.2061 0.2590 962 0.8592 16
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Figure 3. ANN model training & error propagation with increasing training cycles for the 3-9-7-6-5 architecture 

  

IV. CONCLUSION 

Numerous architectures are tried to develop suitable ANN model for predicting performance in terms of 

material removal rate, taper, overcut and delamination for ultrasonic drilling of GFRP. A feed forward back propagation 

neural network model with a 3-9-7-6-5 configuration is found most suitable. This approach can be considered as an 

alternative to practical technique to predict the process outcome. template will number citations consecutively within 

brackets [1]. The sentence punctuation follows the bracket [2].  
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