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Abstract- Here we present different approaches to the efficient Implementation of generic carry-save compressor trees on 

FPGAs. They present a fast critical path, independent of bit width, with practically no area overhead compared to CPA trees. 

Along with the classic carry-save compressor tree, here we present a novel linear array structure, which efficiently uses the 

fast carry-chain resources. This approach is defined in a parameterizable HDL code based on CPAs, which makes it 

compatible with any FPGA family or vendor.  

 

Index Terms—Computer arithmetic, multioperand addition, redundant representation, carry-save adders 

 

I. INTRODUCTION 

The use of Field Programmable Gate Arrays (FPGAs) to implement digital circuits has been growing in  Recent years. In 

addition to their reconfiguration capabilit ies, modern FPGAs allow high parallel computing. FPGAs achieve speedups of two 

orders of magnitude over a general-purpose processor for arithmetic intensive algorithms [1]. Thus, these kinds of devices are 

increasingly selected as the target Technology for many applications. Therefore, the efficient implementation of generalized 

operators on 

FPGAs are of great relevance. The typical structure of an FPGA device is a matrix of configurable logic elements (LEs), each 

one surrounded by interconnection resources. In general, each configurable element is basically composed of one or several 

n-input lookup tables (N- LUT) and flip flops. However, in modern FPGA architectures, the array of LEs has been 

augmented by including specialized circuitry, such as dedicated multipliers, block RAM, and so on. The intensive use of 

these new elements reduces the performance GAP between FPGA and ASIC implementations. One of these resources is the 

carry-chain system, which is used to improve the implementation of carry propagate adders (CPAs). It main ly consists of 

additional specialized logic to deal with the carry signals, and specific fast routing lines between consecutive LEs, as shown 

in Fig. 1. This resource is presented in most current FPGA devices from low-cost ones to high-end families, and it accelerates 

the carry propagation by more than one order of magnitude compared to its implementation using general resources. Apart 

from the CPA implementation, many studies have demonstrated the importance of using this resource to achieve designs with 

better performance and/or less area requirements,and even for implementing non arithmetic circuits. Multioperand addition 

appears in many algorithms, such as multip licat ion, filters, SAD, and others. To achieve efficient implementations of this 

operation, redundant adders are extensively used. Redundant representation reduces the addition time by limiting the length 

of the carry-propagation chains. The most usual representation are carry-save (CS) and signed-digit (SD). A CS adder (CSA) 

adds three numbers using an array of Full-Adders (FAs), but without propagating the carries. In this case, the FA is usually 

known as a 3:2 counter. The result is a CS number, which is composed of a sum-word and a carry-word. Therefore, the CS 

result is obtained without any carry propagation in the time taken by only one FA. The addition of two CS numbers requires 

an array of 4:2 compressors, which can be implemented by two 3:2 counters. The conversion to non redundant representation 

is achieved by adding the sum and carry  word in a conventional CPA [24]. In this paper, we study the efficient 

implementation of mult ioperand redundant compressor trees in modern FPGAs by using their fast carry resources. Our 

approaches strongly reduce delay and they generally present no area overhead compared to a CPA tree. Moreover, they could 

be defined at a high level based on an array of standard CPAs. As a consequence, they are compatible with any FPGA family 

or brand, and any improvement in the CPA system of future FPGA families would also benefit from them. Furthermore, due 

to its simple structure, it is easy to design a parametric HDL core, which allows synthesizing a compressor tree for any 

number of operands of any bit width. Compared to previous approaches, our design presents better performance, is easier to 

implement, and offers direct portability. 

 

 

II. CS COMPRESSOR TREES  
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In this section, we present different approaches to efficiently map CS compressor trees on FPGA devices. In addition, 

approximate area and delay analysis are conducted for the general case. A more accurate Analysis for specific examples is 

provided in Section 4.Let us consider a generic compressor tree of Nop input operands with N bit width each. We also 

assume the same bit width for input and output operands. Thus, input operands should have previously been zero or sign 

extended to guarantee that no overflow occurs. A detailed analysis of the number of leading guard bits  required for 

multioperand CS addition. 

2.1 Regular CS Compressor Tree Design 

The classic design of a multioperand CS compressor tree attempts to reduce the number of levels in its Structure. The 3:2 

counters or the 4:2 compressors are the most widely known building blocks to implement it  [43]. We select a 4:2 compressor 

as the basic building block, because it could be efficiently implemented on Xilinx FPGAs [28]. The implementation of a 

generic CS compressor tree requires [Nop/2]-1 4:2 compressors (because each one eliminates two signals), whereas a carry-

propagate tree uses 

 
1. N-b it width CS 9:2 compressor tree based on a linear array of CSAs. 

Nop-1CPAs (since each one eliminates one signal) [24]. If we bear in mind that a 4:2 compressor uses Practically double the 

amount of resources as CPAs [28], both trees basically require the same area. On the other hand, the speed of a compressor 

tree is determined by the number of levels required. In this  Case, because each level halves the number of input signals, the 

critical path delay (D) is approximately.  

L 4:2 =[ log2(Nop)]-1              (1) 

D~ L 4:2 . d4:2                         (2) 

whereL4:2is the number of levels of the compressor tree and d4:2is the delay of a 4:2 compressor level (Including routing). 

This structure is constructed assuming a similar delay for all paths inside each 4:2  

 

 

Compressor. Nevertheless, in FPGA devices with dedicated carry resources, the delay from the carry  Input to the carry output 

and the routing to the next carry input is usually more than one order of Magnitude faster than the rest of the paths involved 

in connecting two FAs (see Fig. 1). Thus, the connection of FAs through the carry-chain should be preserved as much as 

possible to obtain fast circuits. In fact, this is  the idea behind the structure of the 4:2 compressor presented for Xilinx FPGA. 

We now generalize this  idea to compressors of any size by proposing a different approach based on linear arrays. This 

reduces the critical path of the compressor tree when it is  implemented on FPGAs with specialized carry -chains. 

2.2 Linear Array Structure  

In the previous approach, specialized carry resources  are only used in the design of a single 4:2 compressor, but these 

resources have not been considered in the design of the whole compressor tree structure. To optimize the use of the carry 

resources, we propose a compressor tree structure similar to the classic linear array of CSAs. However, in our case, given the 

two output words of each adder (sum-word and carry word), only the carry-word is connected from each CSA to the next, 

whereas the sum words are  Connected to lower levels of the array. Fig. 2 shows an example for a 9:2 compressor tree 

designed using the proposed linear structure, where all lines are Nbit width buses, and carry signal are correctly shifted. For 

the CSA, we have to distinguish between the regular inputs (A and B) and the carry input (Cin the figure), whereas the 

dashed line between the carry input and output represents the fast carry resources. With the exception of the first CSA, where 

Ciis used to introduce an input operand, on each CSA Ciis connected to the carry output (Co) of the previous  CSA, as shown 

in Fig. 2. Thus, the whole carry-chain is preserved from the input to the output of the compressor tree (from I0 to Cf). First, 

the two regular inputs on each CSA are used to add all the input operands (Ii). When all the input operands have been 
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introduced in the array, the partial sum-words (Si) prev iously generated are then added in order (i.e., the first generated 

partial sums are added first) as shown inFig.2. 

 
Fig 2.Proposed 9:2 compressor adder tree 

In this way, we maximize the overlap between propagation through regular signals and carry chains. Regarding the area, the 

implementation of a generic compressor tree based on N bit width CSAs requires  Nop/2 of these elements (because each 

CSA eliminates one input signal) Therefore, considering that a CSA could be implemented using the same number of 

resources as a binary CPA (as shown below), the proposed linear array, the 4:2 compressor tree, and the binary CPA tree 

have approximately the same hardware cost. 

2.3 Improvement for Ternary Adders 

To improve the performance of multioperand addition, the newest On these FPGAs, a ternary adder requires  the same amount 

of resources as a simple 2-input adder while showing a similar speed. Since each ternary adder eliminates two operands, the 

number of adders required for a compressor tree is[(Nop-1)/2], which is almost half the amount needed in the binary case. On 

the other hand, the number of levels is  

       L3:1=[Log3(Nop)],                     (3) 

which is considerably faster than the one based on binary adders. Therefore, the ternary adder is preferred to implement multi 

operand parallel addition when targeting these devices. We now present how our linear array compressor tree design is 

adapted to take advantage of this new resource. 

 
Fig.3. CS 11:2 compressor tree based on a linear array o f 5:3compressors. 

 

   Th is new compressor tree design (see example in Fig.7) could also be implemented at a high -level Description using 

ternary CPAs as a basic building block (see Fig. 6).n ternary adders of N Add-bit width Diagonally arranged are required to 

implement it (simplifying the extreme cases). Once again, the most Significant sum-bit of each ternary adder comprises the 

sum-word of the compressor tree, whereas the last cB out is the final carry-word. Except for the ending adders, each ternary 

adder sums one bit of each Operand and partial sum, vary ing the bit weight depending on its relative position. 

III. IMPLEMENTATION RES ULTS AND COMPARISON 

   To measure the effectiveness of the designs presented in this paper, we have developed two generic VHDL modules 

implementing the proposed compressor tree structures: First, the linear array implemented by using CPAs (binary and 

ternary) and, second, the 4:2 compressor tree using the design of the compressor presented in Both modules provide the 

output result in CS format and allow the selection of different parameters such as: The number of operands (Nop), the 

number of b its per operand (N), and the basic building blocks (i.e ., b inary or ternary adder) for the linear array. For the 

purposes of comparison, similar modules, which implement classic adder tree structures  based on binary CPAs and ternary 

CPAs, have also been developed. 

 

 



 

International Journal of Advance Engineering and Research Development (IJAERD)  

Volume 2,Issue 3,March -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406 

 

@IJAERD-2015, All rights Reserved                                                                    66 

 

 
 

Fig.4 Delay comparison of compressor trees with 16     bit inputs 

 

IV. CONCLUS IONS  

Efficiently implementing CS compressor trees on FPGA, in terms of area and speed, is made possible by using the 

specialized carry-chains. While comparing among 3:2 and 4:2 and 5:3 compressor trees.  

The proposed CS linear array compressor trees lead to marked improvements in speed compared to CPA 

approaches. Furthermore, the proposed high-level definit ion of CSA arrays based on CPAs facilitates ease-of-use and 

portability, even in relation to future FPGA arch itectures, because CPAs will p robably remain a  key element in the next 

generations of FPGA. 
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