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Abstract — Cellular automata (CA) has been used in the recent past by many researchers for homogeneous and 

heterogeneous traffic flow modelling. The position and speed of vehicles are assumed to be discrete in CA traffic flow 

model. The speed of each vehicle changes according to its interactions with other vehicles and is governed by some pre -

assigned (stochastic) rules. The major advantages of CA is its ability to handle large microscopic simulation. In this 

paper, introduction of traffic flow modelling using CA is presented. The basic concept of CA is briefly explain. The paper 

study also highlights the advantages and limitation of CA modelling concept in traffic flo w models. 
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I. INTRODUCTION 

The increasing use of computers has led to a new way of looking at the world. This view sees nature as a form 

of computation. A computer fo llows rules. At each moment, the rules determine exact ly what the computer need to do 

next. The ru les are implemented by d iscrete dynamics into algorithms to reflect the system behaviour. Cellular automata 

are discrete dynamical systems whose behavior is completely specified in terms of a local relat ion. 

The word Automata is the plural of automaton. While the word „automaton‟ brings up the image of a 

mechanical toy or a soulless organism, in computer science it has a very p recise meaning . It refers to all machines whose 

output behavior is not a direct consequences of the current input, but of some past history of its inputs. They are 

characterised as having an internal state which is a repository of this past experience. The inner state o f an automaton is 

private to the automaton, and is not avai1able to an external observer. One type of automaton that has received a lot of 

attention is cellular automata. For one thing, they make pretty pictures. For another, they are related to exciting n ew ideas 

such as artificial life and the edge of chaos. By building appropriate rules into a cellular automaton, it  can simulate many 

kinds of complex behaviour, ranging from the motion of fluids governed by the Navier-Stoke's equations to outbreaks of 

starfish on a coral reef. Cel1s are discrete dynamical systems whose behaviour is completely specified in terms of a local 

relation. 

A cellular automaton can be thought of as a stylised universe. Space is represented by a uniform grid, with each 

cell containing a few bits of data; time advances in discrete steps and the laws of the "universe" are expressed in, say, a 

small look-up table, through which at each step each cell computes its new state from that of its close neighbours. Thus, 

the system's laws are local and  uniform. Even in  computer science various names fo r cellular automata were used, 

including tessellation automata, particle hopping, cellular spaces, iterative automata, homogeneous structures and 

universal spaces.  

Many researchers have used Cellular Automata (CA) fo r traffic flow modelling efficiently for homogeneous 

traffic flow. Literatures shows that CA application is simple and computationally efficient for traffic flow modelling. In 

the present paper we d iscussed about the basic concept of the cellular automata and its application  in  traffic flow model. 

Nagel and Schreckenberg (1992) presented the cellular automata model for traffic flow well known as NaSch model. 

This model also describe in separate section as to understand how the CA work fo r traffic flow modelling. 

  

II. HIS TORY OF CELLULAR AUTOMATA 

Despite their very simple construction, nothing like general cellu lar automata appear to have been considered 

before about the 1950s. Yet in the 1950s – inspired in various ways by the advent of electronics computers- several 

different kinds of systems equivalent to cellu lar automata were independently introduced. A variety of precursors can be 

identified. Operations on sequences of digits had been used since antiquity in  doing arithmetic. Fin ite d ifference 

approximations to differential equations began to emerge in  the early 1900s and were fairly  well known by  the 1930s. A 

Turning machines invented in 1936 were based on thinking about arbitrary operations on sequences of discrete elements.  

The best-known way in which cellular automata were introduced (and which eventually led to their name) was 

through the work by Neumann (1959). The first, mostly in the 1960s, was increasingly whimsical discussion of building 

actual self-reproducing automata –  often in the fo rm of spacecraft. The second was an attempt to capture more of the 
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essence of self-reproduction by mathemat ical studies of detailed properties of cellu lar automata. In  1967, Ulam has used 

CA for generating complicated pattern, and mentioned that th is might be relevant to biology. But perhaps because almost 

no progress was made on this with trad itional mathemat ical methods, the result was not widely known, and was never 

pursued. Ulam (1970) has used the similar concept for mathematical logic for "simulation games". Wolfram (1986) has 

made a CA rules based on von Neumann's cellular automata. Th is rule are used to various engineering and science field 

by certain modification in recent past. A graphics program of using cells concept specifically called  a  cellu lar automaton 

when it is 

1. Parallel, 

2. Local, and  

3. Homogeneous. 

Parallelis m means that the indiv idual cell updates are performed independently of each other. That is, we think of all the 

updates being done at once. Locality means that when a cell is updated, its new value is based solely on the old values of 

the cell and of its nearest neighbours. Homogeneity means that each cell is updated according to the same ru les. 

Typically  the values of the cell and of its nearest four or eight neighbours are combined according to some logico-

algebraic formula, or are used to locate an entry in a preset lookup table. 

 

III. WORKING PRINCIPLE OF CELLULAR AUTOMATA 

In cellular automata space, time and state variables are discrete which makes them ideally suited for high-

performance computer simulat ion. However, CA modelling differs in several respects from coutinum models. These are 

usually based on differential equation, which often cannot be treated analytically. One has to solve them numerically and 

therefore the equation have to be discretized. In  general, only space and time variab les become d iscrete whereas the state 

variable (e.g. the density or velocity) is still continuous. CA is discrete in space and time variables, this discreteness is  

already taken into account in the definition of the model and its dynamics. Th is allows for obtaining the desired 

behaviour in a much simpler way. The numerical solution of (d iscretised) differential equations is only accurate in the 

limit Δx , Δt→0. Th is is different in the CA where Δx and Δt are finite and accurate results can be obtained since the 

rules (dynamics) am designed such that the discreteness is an important part of the model. 

In order to achieve complex behaviour in a simple fashion one often resorts to a stochastic description. A 

realistic situation seldom can be described completely by a determin istic approach. A cellular automaton is a discrete 

dynamical system. Each point in a regular spatial lattice, called a cell, can have anyone of a finite number of states. Th e 

states in the cells of a lattice are updated according to a local rule say R. That is, the state of the cell at a  g iven time 

depends only on its own state one time step previously, and the states of its nearby neighbours at the previous time step. 

All cells in  the lattice are updated synchronously. The state of the lattice advances in discrete time steps. In the above 

definit ion, the rule R is identical and homogeneous for all sites and applied simultaneously to each of them. The ru le R is 

some well-defined function and a given initial configuration will always evolve the same way.  

However it may be very convenient for some applications to have certain degree of randomness in the rule. It 

may be desirable for some instance, that a rule selects one outcome among the several possible states, with a probability 

p. Cellular automata whose updating rule is driven by external probabilities are called probabilistic  cellular automata. On 

the other hand, those which strictly comply with the definit ion given above, a re referred to as deterministic cellular 

automata. 

CA is used in traffic flow modelling since last decade. The freeway being simulated is discretised into 

homogeneous cells of equal length, and time is discretised into time-steps of equal duration. These cells can be either in 

an occupied or empty state, depending on whether a vehicle is present at that location. The state of the cells is updated 

sequentially at each time step with a set of vehicle position updation rules. 

A cellular automata ru le is local,  by defin ition. The updating of a g iven cell requires one to know only  the state 

of the cells in it's vicinity. The spatial region in which a cell needs to search is called the neighbourhood. For two -

dimensional cellu lar automata, two neighbourhoods are often considered. The key idea of neighbourhood is that when 

updation occurs, the cells within  the block evolve only according to the state of that block and don't depend on what is in 

the adjacent blocks. In practice when simulating a given cellu lar automata ru le, it is not possible to deal with an infin ite 

lattice. The system must be finite and have boundaries. A site belonging to the lattice boundary doesn't have the same 

neighbourhood as other internal sites. In  order to define the behaviour of these sites , a different evolution ru le can  be 

considered, which sees the appropriate neighbourhood. The basic determin istic CA rules given by Wolfram (1986) is 

explained in fo llowing subsection. 

 

3.1 Wolfram's CA rules 

Wolfram (1986) worked with a one-dimensional variant of von Neumann's cellu lar automata; this was fully 

horizontal and occurred on a single line. Each cell touched only two other cells, its two immediate neighbours on either 

side, and each succeeding generation was represented by the line underneath th e preceding one. A cell in generation two 

would determine its state by looking at the cell d irectly  above it, i.e. in generation one, and that cell's two  neighbours. 

Thus, there arc eight possible combinations of the states of those three cells ranging fro m "000"  (all off, all white) to 
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"111" (all on, all black) as shown in Fig.1. Three cells and their updation state called an applet. He has specified such 

different combination and given them CA rule number from 0 to 254. The CA rule 0, CA ru le 254 and CA rule 184 are  

illustrated in Fig. 1. The CA ru le 0 means that whatever updation occurs in the neighbouring cells, the middle cell will be 

white (fixed rule). Similarly CA rule 254 updates middle cell to black fo r any colour combination in neighbouring cells.  

The working of CA rule 184 is illustrated as shown in Fig. 2. In this rule, status of cell updation is defined as described in 

CA rule 184 in Fig. 1. The cells updates their state according to neighbours state (flexible ru le) . Hence, in the second 

time- 

 

 

 
Figure 1.  Illustration of CA rules described by Wolfram (1986) 

 

 
Figure 2. Updation of cell status in case of CA rule 184  

 

step the cell number four, five, ten and eleven from the left, changes its state in next t ime step according to rule 184 as 

shown in Fig. 2. Th is is similar to the position updation of vehicles (or how the vehicle advances) at every time step. 

Cellu lar automata are the mathematical models for complex natural sys tems containing large numbers of simple identical 
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components with local interactions. They consist of a lattice of sites, each with a finite set of possible values. The value 

of the sites evolve synchronously in discrete time steps according to identical ru les. The value of a part icular site is 

determined by the previous values of a neighbourhood of sites around it. Single dimension cellular automata are arrays of 

discrete cells with d iscrete values. Yet sufficiently large cellular automata often show seemingly continuous macroscopic 

behaviour. They can thus potentially  serve as models for continuum systems, such as fluids. Their underlying 

discreteness, however, makes them part icularly suitable for d igital computer simulation and for certain forms of 

mathematical analysis. On a microscopic level, physical fluids also consist of discrete particles. But on a large scale, 

they, too, seem continuous, and can be described by the partial differential equations of hydrodynamics. The form of 

these equations is in fact quite insensitive to microscopic details. Changes in molecular interaction laws can affect 

parameters such as viscosity, but do not alter the basic form of the macroscopic equations. As a result, the overall 

behaviour of flu ids can be found without accurately reproducing the details of microscopic molecular dynamics.  

Cellu lar automata is developed in discrete dynamics of space and time, and is a discrete simulation method. Its 

buildup from the single string of one dimensional automata, and can be arrang ed in two  or higher d imensional lattice for 

two or higher dimensional automata. All cells in CA are identical and having discrete state. The future state of each cell 

depends only of the current state of the cell and the states of the cells in the neighbou rhood. The development of each cell 

state is defined by simple ru le CA models are in  principle amenable to single b it coding. Th is approach run extremely 

fast on traditional vector-computers. 

 

3.2 Properties of CA 

• CA developed in space and time. 

• A CA is a discrete simulation method, hence space and time are defined in d iscrete steps. 

• A CA is built up from cells, that are lined up in a string for one- d imensional automata. 

• CA can be arranged in a two or h igher dimensional lattice for two - or h igher dimensional automata 

• The number of states of each cell is finite.  

• The states of each cell are d iscrete. 

• All cells are identical. 

• The future state of each cell depends only of the current state of the cell and the states of the cells in  the 

neighbourhood. 

• The development of each cell is defined by rules.  

• CA models are in princip le amenable to single bit coding. This approach run extremely fast on traditional 

vector-computers. 

 

IV. APPLICATION IN TRAFFIC FLOW MODELLING 

The CA recently used for traffic flow modelling in  case of homogeneous and heterogeneous traffic due to its 

high computing power which makes possible on-line applicat ion of traffic flow models. CA has many distingue 

advantages in microscopic traffic flow modelling. CA models are Robust numerics, which seem at  the first glance as too 

rough an approximat ion of reality, include the same range of dynamic phenomena as the most advanced flu id -dynamical 

models for traffic flow to date.  

The consequence for traffic simulation is that, as long as one expects certain  s imple aspects of traffic jam 

formation to be realistic enough for the problem under consideration e.g. for large-scale questions, the simplest possible 

model will be sufficient for the task thus saving human and computational resources. The present results  show that close 

up car-fo llowing  behaviour is not the most important aspect of traffic to model. The important crucial aspect is to model 

deviations from the s mooth behaviour and the ways in which they lead to jam formation. Another important aspect, 

which seems far from obvious, is the acceleration behaviour, especially when there are other cars ahead, since it is the 

acceleration behaviour that mostly determines the maximum flow out of a jam. Therefore, investigations such as CA 

models are important for microscopic modelling as long as one does not have the perfect model of driv ing or the 

computational resources to run it . Th is concept can be stated as min imal. Fast running and easy to implement CA can  be 

very useful in interpreting measurements such as for the traditional 5-min-averaged fundamental diagrams (speed-flow-

density). CA models are inherently microscopic, which allows one to add individual properties to each car such as the 

identity of travelers, route plan, and engine temperature for emission modelling. These properties are imperat ive for the 

kind of traffic models that are needed in current policy evaluation processes. CA models are stochastic in  nature, thus 

producing different results when using different random seeds even when starting from identical init ial conditions. At 

first, this is certainly considered a disadvantage from the point of view of policy makers or traffic engineers. However, 

the traffic system is inherently stochastic and the variance of the outcomes is an important variable itself. Furthermore, 

there is reason to believe that the average over several stochastic runs will not be identical to a deterministic run. In CA 

models have potential to apply at network level and parallel computation can be possible. 

Due to discreteness of CA it  have disadvantages like, speed of the vehicle are imitated to discrete time steps, 

acceleration and decelerat ion are more than the real, lane changing is done in single t ime step (one second) whereas it 

needs more t ime to change the lane. 
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4.1 Limitations of CA for Traffic Flow Modelling 

Some of the limitations of CA based traffic flow models are listed below.  

• Time setup is discrete hence the acceleration and deceleration is more than the real.  

• If vehicle size and speed are widely differ, then its difficu lt to represent them as uniform cells.  

• Accelerations and decelerations are much larger than in reality due to discreteness. 

• Lane change is done in one second (or for given time-step) whereas actual time required more than that. 

• The speed of vehicle are imitated to discrete time steps. 

 

The Traffic flow modelling using CA is extensively done fo r an  uninterrupted roads like freeway and arterial to 

model the traffic flow behaviour. In cellular automata the cells, which are either empty or occupied by  exact ly one 

vehicle. Movement takes place by distance between vehicle and vehicles characteristics. In CA models, a road is 

represented as a string. Initial proposition of a CA model for traffic is given by Gerlough (1956) and same is extended by 

Cremer and Papageorgio (1981), Cremer and Ludwig (1986) and co-workers. They implemented fairly  sophisticated 

driving rules and also used single-bit coding with the goal to make the simulat ion fast enough to be useful for real -time 

traffic applications. The bit-coded implementation, though, made it  too impractical for many traffic applications. In 1992, 

CA models for traffic were brought into the statistical physics community. Nagel and co -workers used model with 

maximum velocity for one and for two  dimensional tra ffic. One-d imensional here refers roads includes multi-lane traffic. 

Two-dimensional traffic in the CA context usually means traffic on a two dimensional grid, as a model for traffic in 

urban areas (Intersection). 

Traffic flow model developed by Nagel and Schreckenberg (1992) is defined as a one-dimensional array. This 

means the total number of vehicles N in  the system is maintained constant. Each  cell may be occupied by one vehicle or 

it may be empty. Each cell corresponds to a road segment with length L. In this approach, cars are represented as points 

moving on a discretised road with only a small set of possible velocit ies and accelerations. 

Since, the introduction of NaSch model developed by Nagel and Schreckenberg (1992), many researchers has 

used CA for traffic flow models The CA is also applied by many researchers by modifying the basic concept for the 

heterogeneous traffic (Chowdhury et al., 2000, TRANSIM, 2000). The same is modified by applying the grid based 

approach by Gundaliya et al. (2004) and Lawarence and Chang (2004). In The following section the NaSch model is 

explain with the numerical example.  

 

V. NAGEL-SCHRECKENBERG MODEL  

Nagel and Schreckenberg (1992) presented the cellular automata model for single lane traffic flow for 

homogeneous traffic . Th is model is taken  as the base model for present research work. The process of vehicle movement 

is described here. In CA t raffic flow models, the position, speed, acceleration as well as time are treated as discrete 

variables. In  a basic CA traffic flow model each vehicle has an integer speed with values between zero  and the maximum 

speed of the vehicle. The speed of each vehicle can take one of the integer valu es out of say 0,1,2,3, ... ,vmax, in term of 

cells per time step. The road is represented by a cell which can be either empty or occupied by at most one vehicle at a 

given instant of time. At each discrete time step, the state of the system is updated following a well defined rule. In 

NaSch model vehicles updation are followed by four ru les namely accelerat ion, deceleration, randomisation and 

updation. This model is developed for the homogeneous traffic flow. In these rules except probability p  all operation are 

integer. A numerical example is taken for exp lain ing vehicle movement on road in NaSch model. In this example noise 

probability (p) taken as 1/3 which reflect the driver behaviour. A ll vehicles are taken as cars with maximu m speed (vmax) 

allowed as 2 cell/time step. In Fig. 3 the road stretch are represented with the uniform front gap of vehicle is taken 

numerically as number of empty cells ahead plus one. The updation of vehicle speed are indicated after applying each 

rule shown in Fig. 3. The uniform vehicle  (car) is considered in this example. Due to noise probability an average one 

third of the cars qualified slowdown in the randomisation step. All cars update their speed parallaly  at every t ime step as 

shown in Fig. 3 step by step. In Fig. 3 all four cars speed are indicated on right top corner of the cell at every step. The 

initial speed of car 1, 2, 3 and 4 are 0, 1, 2, and 1 respectively. The front gap of all cars 1, 2, 3, and 4 are -1, 1, 3, and 2 

respectively. The front gap of all cars are indicated at the right bottom corner of the cell in  Fig. 3. The first car front g ap 

is taken as -1, means that there is infin ite gap and vehicle can attain the speed of its maximum speed. 

 Step 1: Accelerat ion 

If vn<vmax then the speed of the n
th

 vehicle is increased by one, vn = min (vn + 1, vmax) but remains unaltered if vn=vmax. 

After applying this rule the speed of the cars are 1, 2, 2, and 2 respectively for car 1, 2, 3, and 4. The car 3 is going  with 

its maximum speed hence its speed remain unaltered. This reflects the general tendency of the drivers to drive as fast as 

possible, if allowed to do so, without crossing the maximum speed limit .  

 Step 2: Decelerat ion due to other vehicles (vehicle ahead) 

If gapp
f
 ≤ vn in the speed of the n

th
 vehicle is reduced to gapp

f
 - 1, here gap is one even if a front vehicle is there in the 

next  cell, vn = max (vn, gapp
f
 - 1). Here gapp

f
 is front vehicle gap in  the present lane. After applying this ru le the speed of 
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cars are 1, 0, 2, and 1 respectively for car 1, 2, 3, and 4. The car 2 and car 4 reduces its speed based on the available front 

gap in number o f cell as 0 and 1 cells per time step respectively. 

 

 
Figure 3 Numerical example for the application of CA rules for NaSch model 

 Step 3: Randomisation 

If vn > 0, the speed of the n
th

 vehicle is decreased randomly by one unit with the probability p but does not change vn = 0, 

vn = max (vn - 1, 0) but remains unaltered if vn = vmax. After applying this rule the speed of the cars are 1, 0, 2, and 0 

respectively for car 1, 2, 3, and 4. After apply ing this rule the car 4 has its speed reduced by 1 with the chance of 

probability p. Th is step takes into account the different behavioural pat terns of the individual drivers, especially, non-

deterministic acceleration and overreaction while slowing down; this is crucially important for the spontaneous  formation 

of traffic jams. 

 Step  4: Vehicle movement 

Each vehicle moves forward according to its new speed determined in Steps 1-3, i.e. 

xn= xn + vn 

The vehicle then forwarded with the number o f cell (speed) as shown in step 4 in Fig. 3. After applying all rule 

the new speed of cars are 1, 0, 2, and 0 respectively for car 1, 2, 3, and 4. The front gap all cars are then updated as -1, 2, 

1, and 4 respectively for car 1, 2, 3 and 4. This procedure again  repeated for another time step. It is to be noted that even 

changing the precise order of the steps of the update rule stated above would change the properties of the model. This 

model may be regarded as a stochastic CA. 

VI. SUMMARY AND CONCLUS ION 

In this paper basic princip le of the cellu lar automata and its development are exp lained. The characteristics of 

CA and its application in traffic flow modelling is presented. The computational advantage of the CA and its capability to 

reproduce the complex phenomena is discussed in brief with h ighlighting some limitation of the CA based traffic flow 

models. Wolfram (1986) CA rules are exp lained taking the numerical  example. The ru le pertaining to the vehicular 

movement is explained to understand the working of CA in case of traffic flow model. The working princip le of NaSch 
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model for freeway is explained with a numerical example for understanding the implementation of the four basic rules  

(accelerat ion, decelerat ion, randomization and updation) in CA based model.  This paper gives brief working princip le of 

CA based traffic flow models and its application.  
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