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Abstract 

 Using Laplace and Kontorowich-Lebedev transform technique; an analysis of 

unsteady flow of a dusty viscous fluid through an infinite wedge is carried out. The 

expressions for velocity of gas and dust particles have been derived. In a limiting case when 

r  ∞ has been discussed graphically. 
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1. INTRODUCTION 

  The phenomenon of the flow of dusty fluid has been studied by a number of 

research scholors. The influence of dust particles on viscous flows has great importance in 

petroleum industry and in the purification of crude oil. Other importance applications of dust 

particles in a boundary layer include soil erosion by natural winds and dust entertainment in 

a cloud during nuclear explosion. Also such flows occur in a wide range of areas of technical 

importance like fluidization, flow in rocket tubes, combustion, paint spraying and move 

recently blood flows in capillaries. 

  P.G. Saffman [14] formulated the equations for dusty fluid flow and studied 

the laminer flow of a dusty gas. Michael and Miller [13] investigated the motion of dusty 

gas with uniform distribution of the dust particles occupied in a cylinder and between two 

rotating Cylinders. Samba Siva Rao [15] obtained unsteady flow of a dusty viscous fluid 

through circular cylinder, E. Amos [1] studied magnetic effect on pulsatile flow in 

constructed axis-symmetric tube. A. J. Chamka [5] obtained unsteady hydromagnetic flow 

and heat transfer from a non-isothermal stretching sheet immersed in a porous medium. 

Datta and Dalal [6] obtained solutions for pulsatile flow and heat transfer of dusty fluid 
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through an infinitely long annular pipe. Liu [12] studied flow induced by an oscillating 

infinite flat plate in a dusty gas. Indrasena [10] made the solution of steady rotating 

hydrodynamic flows. Girishwar Nath [9] studied the dusty viscous fluid flow between 

rotating coaxial cylinders. Calmelet-Eluhu and Philip crooke [4] studied unsteady 

conducting dusty gas flow through a circular pipe in the presence of an applied and induced 

magnetic field. Bagewadi and Greesha [2], [3] studied dusty fluid flow in Frenet frame field 

system and recently the authors [7], [8] obtained solution for the flow of unsteady dusty 

fluid under varying time dependent pressure gradients through different regions like parallel 

plates, rectangular channels, and open rectangular channel. Ramesh et. al. [11] considered 

MHD effect on dusty boundary layer flow over an inclined stretching sheet with non-

uniform heat source/sink. They transformed the governing equations into a system of non-

linear ordinary differential equations by applying similarity transformation. A more recent 

analysis of convective dusty flow past a vertical stretching sheet with internal heat 

absorption was given by Nand Keolyar and Sibanda [16]. They also reduced the boundary 

layer equations into a set of similar equations and solved them. Another study regarding 

single and two - phase models of nano fluid heat transfer in wavy channel was done by 

Rashidi et. al [17] and investigated the behaviour of heat transfer coefficient and velocity 

distribution. 

  The present investigation deals with the study of unsteady dusty viscous fluid 

flow through an infinite wedge. We have adopted the Laplace and Kontorowich-Lebedev 

transform techniques for the solution of the differential equations. The Kontorowich-Lebdev 

transformation is frequently applied to the problems associated with wedge. Thus the 

expressions for the velocities of gas and the dust particles have been obtained. The limiting 

case as r  ∞ is also discussed graphically 

2. EQUATIONS OF MOTION 

  The equations of motion of conducting unsteady viscous incompressible fluid 

with uniform distribution of dust particles are given by [14] 

 For fluid phase 

 Equation of continuity 

         ........(2.1) 0. 

u
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 Linear Momentum 

             .......(2.2) 

 For dust phase 

 Equation of continuity 

         .......(2.3) 

 Linear Momentum 

       .......(2.4) 

 We have the following nomenclature : 

𝑢   – velocity of fluid Phase; 𝑣  – velocity of dust phase;  – density of the gas, p – pressure of 

fluid, N – number density of dust particles,  – kinematic viscosity, k = 6 – Stoke’s 

resistance (drag-coefficient), a – spherical radius of dust particle, m – mass of dust particle, 

 – the coefficient of viscosity of fluid particle, t – the time. 

3. FORMATION AND SOLUTION OF THE PROBLEM 

  Consider the flow generated by a body of infinite length which at time t = 0 is 

started impulsively from rest with constant velocity parallel to its length. The attention will 

be focused on the case of a body consisting of two - semi infinite planes intersecting at a 

given angle to form a wedge, which moves parallel to the line of intersection. The fluid is 

therefore set into motion in a wedge-shaped region of angle , say where  may lie between 

0 and 2. Since the wedge is of infinite length, we expect the flow parallel to wedge, and 

from the equation of continuity, independent of distance along it. Thus the flow is 

unidirectional, but it is three dimensional in the sense that the velocity depends upon both 

co-ordinates in the plane normal to the motion. 

  We consider a wedge composed of two semi-infinite planes   

interecting at angle  where 0 ≤ 𝛽 ≤ 2𝜋. We take for reference frame a cylindrical polar 
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system of co-ordinates (r, , z) with z-axis parallel to the line of intersection of two planes. 

Since there is no pressure-gradient, the equations (2.1) – (2.4) reduce to 

 .......(3.1) 

     .......(3.2) 

  We now solve these equation under the boundary conditions 

   .......(3.3) 

    .......(3.4) 

Applying Laplace transform with respect to t to equations (3.1) and (3.2) and using the 

notation 

   

We find that 

   .......(3.5) 

       .......(3.6) 

 Eliminating 𝑣  from (3.5) and (3.6), we have 

    .......(3.7) 

Where, 
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u ),( pru

 The boundary conditions are tranformed into 

     .......(3.8) 

 Now, the Kontorowich-Lebedev transformation of a function is defined   by 

    .......(3.9) 

 Where ki is modified Macdonald function of order i. The corresponding inversion 

formula is given by Sneddon (1972) p. 361. 

   .......(3.10) 

 We multiply (3.7) by r2 and apply (3.9) to it. We integrate by parts several times and 

make use of modified Bessel equation satisfied by ki and finally arrive at 

      .......(3.11) 

 where   denotes the Kontorowich-Lebedev transformation of. 

 The boundary conditions (3.8) is transformed into 

     .......(3.12) 

 The solution of the differential equation (3.11) is given by 

   .......(3.13) 

 on applying the boundary conditions (3.12) we have 
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    .......(3.14) 

 next an application of inversion formula for the Kontorowich-Lebedev 

transformation, yields 

   .......(3.15) 

 Also from (3.6), we find that  

     .......(3.16) 

 Finally an application of the inverse laplace transform of (3.15) and (3.16) provides 

expressions for the velocity of clean fluid and the dust particles respectively in the following 

form 

  .......(3.17) 

    .......(3.18) 

 In case  is given in explicit from, the value of  be written in 

terms of well-known functions and the inverse transform of (3.17) can be evaluated. The 

dust velocity  can be determined from (3.18) whenever   is known.– 

 In fact 

    .......(3.19) 
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4. A SPECIAL CASE 

 Let   be constant, then 

   

 and    .......(3.20) 

 by Sneddon (1972) p. 368 (6.3 b) 

Substituting this value of   in (3.15) 

 we have 

 .......(3.21) 

 Using integral representation (Erdehji, 1953, p. 82) 

 .......(3.22) 

 This can be written in the following simple form 

   

             .......(3.23) 

 Using the formula 
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 where 𝑓(𝑝)      =  𝐿[𝑓 𝑡 ] and Re(p–) > 0, Re() > –1 .......(3.24) 

 the equation (3.23) can be transformed into 

....(3.25) 

 From equations (3.19) and (3.23) we obtain the expression for (r, , t) in the 

following form 

     

 which can further be reduced to 
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   .......(3.28) 

 Substituting the above expression in the right-hand side of (3.25) we       immediately 

obtain 

  

  ......(3.29) 

The expression for u(r, , t) given in (3.29) is rather complicated. 

The limiting case as r ∞ is worth mentioning. 

Thus 

... (3.30) 

 Using the result Sneddon (1972) p. 518 taking 0 <  < ’ 

   ....(3.31) 

 the integral on right-hand side of (3.29) can be evaluated and we have, 

     .....(3.32) 

 Similarly, 
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      ......(3.33) 

5. DISCUSSIONS 

 In the figures (1) and (2) we have plotted the velocity profile for the gas and the dust 

particle respectively against time. From these figures we arrive at the conclusion that for 

fixed values of 𝜏  =
𝑚

𝑘
  viz. 0.2, 0.5, 0.8 velocity profiles decreases very rapidly even for 

small variation in time. Further more, from values of  it is obvious that the velocities of the 

fluid and dust particles decrease when increases. 
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