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Abstract- Data mining is a recent advance technology with great potential to help companies focus on the crucial 

information in the data they have collected about the behavior of their customers. In this paper we are trying to use Data 

mining as a strong tool for security purposes. This paper covers collection of information within the data that queries 

and reports can't effectively reveal. Privacy-preserving data publishing addresses the problem of disclosing sensitive 

data when mining for useful information. In already existing privacy models, differential privacy provides one of the 

strongest privacy guarantees. In this paper, we have resolved issues like Experimental determination and optimization of 

the way of sharing information without leaking personal data. Continuous monitoring was being done and with the help 

of DTI (Decision tree induction classifier) we have classified the upcoming events and made data sharing more reliable. 

More over the location based identification is also included to ensure the overall security in the future also by resolving 

this chronic problem. 
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I. INTRODUCTION 

Data mining, or knowledge discovery, is the computer-facilitated process of digging through and analyzing enormous 

sets of data and then extracting the meaning of the data. Data mining tools predict behaviors and future trends, allowing 

businesses to make proactive, knowledge-driven decisions. Data mining tools can answer business questions that 

traditionally were too time consuming to resolve. They cleanse databases for hidden patterns, finding predictive 

information that experts may miss because it lies outside their expectations. 

                                          
Figure 1. Process of Data Mining 

Data mining derives its name from the similarities between searching for decisive data in a large database and mining a 

mountain for a vein of valuable ore. Both processes require either sifting through an immense amount of material, or 

intelligently probing it to find where the value resides. In typical data mining systems, the mining procedures require 

computational intensive computing units for data analysis and comparisons [1]. Data mining can be seen as a process for 

extracting hidden and valid knowledge from huge databases [11].  A computing platform is, therefore, needed to have 

efficient access to, at least, two types of resources: data and computing processors. For small scale data mining tasks, a 

single desktop computer, which contains hard disk and CPU processors, is sufficient to fulfill the data mining goals. For 

example, regression analysis was used at some point in time in the Vietnam war to predict the possible mortar attacks 

[12]. Indeed, many data mining algorithm are designed for this type of problem settings. Data mining an interdisciplinary 

subfield of computer science, is the computational process of discovering patterns in large data sets involving methods at 

the intersection of artificial intelligence, machine learning, statistics, and database systems. The overall goal of the data 

mining process is to extract information from a data set and transform it into an understandable structure for further use 

[2]. For medium scale data mining tasks, data are typically large (and possibly distributed) and cannot be fit into the main 

memory. Specific uses of data mining include:  

 Market segmentation - Identify the common characteristics of customers who buy the same products from your 

company.  
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 Customer churn - Predict which customers are likely to leave your company and go to a competitor.  

 Fraud detection - Identify which transactions are most likely to be fraudulent.  

 Direct marketing - Identify which prospects should be included in a mailing list to obtain the highest response rate.  

 Interactive marketing - Predict what each individual accessing a Web site is most likely interested in seeing.  

 Trend analysis - Reveal the difference between a typical customer this month and last. 

Large databases exist today due to the rapid advances in communication and storing systems. Each database is owned by 

a particular autonomous entity, for example, medical data by hospitals, income data by tax agencies, financial data by 

banks, and census data by statistical agencies. Moreover, the emergence of new paradigms such as cloud computing 

increases the amount of data distributed between multiple entities. These distributed data can be integrated to enable 

better data analysis for making better decisions and providing high-quality services. For example, data can be integrated 

to improve medical research, customer service, or homeland security.  

In statistical quality control, the CUSUM (or cumulative sum control chart) is a sequential analysis technique. It is 

typically used for monitoring change detection [6]. It referred to a "quality number" θ, by which it meant a parameter of 

the probability distribution; for example, the mean. And, devised Cumulative Sum (CUSUM) as a method to determine 

changes in it, and proposed a criterion for deciding when to take corrective action. When the CUSUM method is applied 

to changes in mean, it can be used for step detection of a time series. A few years later, George Alfred Barnard developed 

a visualization method, the V-mask chart, to detect both increases and decreases in θ [5]. 

 

II. PRIVACY PRESERVING 

Privacy preserving has originated as an important concern with reference to the success of the data mining. Privacy 

preserving data mining (PPDM) deals with protecting the privacy of individual data or sensitive knowledge without 

sacrificing the utility of the data. People have become well aware of the privacy intrusions on their personal data and are 

very reluctant to share their sensitive information. This may lead to the inadvertent results of the data mining. Within the 

constraints of privacy, several methods have been proposed but still this branch of research is in its infancy. Privacy 

models are as follows: 

 Non-interactive: In this database owner first anonymizes the raw data and then releases the anonymized version for 

data analysis. Database is sanitized and released. In a non interactive framework, a database owner first anonymizes 

the raw data and then releases the anonymized version for data analysis. Once the data are published, the data owner 

has no further control over the published data. This approach is also known as privacy preserving data publishing 

(PPDP) [4]. 

 Interactive: Multiple questions asked/answered adaptively. In an interactive framework, a data miner can pose 

queries through a private mechanism, and a database owner answers these queries in response. In an interactive 

framework, a data miner can pose queries through a private mechanism, and a database owner answers these queries 

in response. 

The success of privacy preserving data mining algorithms is measured in terms of its performance, data utility, level of 

uncertainty or resistance to data mining algorithms etc. Privacy-preserving data publishing addresses the problem of 

disclosing sensitive data when mining for useful information [8]. However no privacy preserving algorithm exists that 

outperforms all others on all possible criteria [3]. Differential privacy [10] has recently received considerable attention as 

a substitute for partition-based privacy models for PPDM. However, so far most of the research on differential privacy 

concentrates on the interactive setting with the goal of reducing the magnitude of the added noise [14,13,15] releasing 

certain data mining results [7] ,or determining the feasibility and infeasibility results of differentially-private mechanisms 

[5,10,2]. Effects of data leakage : 

 Invasion of privacy: The intrusion into the personal life of another, without just cause, which can give the person 

whose privacy has been invaded a right to bring a lawsuit for damages against the person or entity that intruded. 

However, public personages are not protected in most situations, since they have placed themselves already within 

the public eye, and their activities (even personal and sometimes intimate) are considered newsworthy, i.e. of 

legitimate public interest.  

 Trust issues: Enable collaboration/communication. Social paradigm: small village, big city, Dynamic and open 

environments. To initiate and build trust we should have to use Formal models, Type of trust data, users, system 

components, Context dependent, bi-directional, asymmetric, Direct evidence and second-hand recommendations. 

 Ruin reputation: Maintaining a reputation is hard. Failure to do so can be catastrophic. The insurance industry is 

proficient at helping clients defend against executive risks or loss of property. More challenging, however, is 

safeguarding an organization‟s reputation. 

 

III. DECISION TREE INDUCTION 

Decision tree is a decision support tool that uses a tree-like graph or model of decisions and their possible consequences, 

including chance event outcomes, resource costs, and utility. It is one way to display an algorithm. Decision trees are 

commonly used in operations research, specifically in decision analysis, to help identify a strategy most likely to reach 

a goal. It is a flowchart like structure in which internal node represents a "test" on an attribute (e.g. whether a coin flip 
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comes up heads or tails), each branch represents the outcome of the test and each leaf node represents a class label 

(decision taken after computing all attributes). The path from root to leaf represents classification rules. 

In decision analysis a decision tree and the closely related influence diagram are used as a visual and analytical decision 

support tool, where the expected values of competing alternatives are calculated. 

Decision trees are commonly used in operations research, specifically in decision analysis, to help identify a strategy 

most likely to reach a goal. If in practice decisions have to be taken online with no recall under incomplete knowledge, a 

decision tree should be paralleled by a probability model as a best choice model or online selection model algorithm. 

Another use of decision trees is as a descriptive means for calculating conditional probabilities. 

Decision trees, influence diagrams, utility functions, and other decision analysis tools and methods are taught to 

undergraduate students in schools of business, health economics, and public health, and are examples of operations 

research or management science methods.  

They are easily understandable. They build a model (made up by rules) easy to understand for the user.  

               

IV. PROPOSED METHODOLOGIES 

 To experimentally determine and optimize the way of sharing information without leaking personal details. 

 To monitor continuously the data that is being shared and learning or training data set of favorable and non-favorable 

events. 

 To apply DTI (decision tree induction) classifier to classify the upcoming events and make data sharing at more 

reliable.  

  

                

 

 

 

 

 

 

 
Figure 2. Represents Proposed Methodology 

 

 V. RESULTS AND DISCUSSION  

Monitoring of user profile: First of all we filter the file according to Weights with the help of code that we have 

developed in MATLAB GUI tool. Then to Identify whether user is legitimate or attacker. The description to identify the 

type of user whether it is a „Legitimate user „or an „Attacker‟ and the condition to identifying the user is if the average 

fluctuation is over or greater than 12 and it repeats more than 10 times (i.e. if the avg. fluctuation goes over „12‟ for 

more than 10 times for an ip address) than the user will consider as an Attacker otherwise it will be a legitimate user or 

normal user. 

 

                       
 

       Figure 3. Average fluctuation represents Attacker           Figure 4. Average fluctuation represents Legitimate user 
 

 

                                         

Sequence the Event Result 

Block the favorable and non-

favorable event (give 

weightage) 

Normalize the weightage 

Further sharing (during favorable 

and non-favorable event or result 

will be categorized) 

Apply Decision Tree Classifier 

on the basis of learning set 

Prepare learning set on the 

basis of normalize weight 
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If the average fluctuation is over or greater than 12 then the type of user is attacker as figure 3, then the type of attack can 

be of two types, whether it is a DOS or DDOS according to the networks from which the packets are coming. 

In computing, a denial-of-service (DoS) or distributed denial-of-service (DDoS) attack is an attempt to make a machine 

or network resource unavailable to its intended users. Then the decision tree induction classifier is to be used. To check 

the accuracy of the type of user which represents zero(0) percent accuracy for attacker but not for legitimate user. 

The results determined after applying CUSUM algorithm for monitoring user‟s profile are successfully detecting the 

abnormalities and abrupt changes if the attacker tries to enter into system and intent to alter the documents. In the 

accuracy comparison with results of the base paper our technique has shown more accuracy than the previous one. 

Therefore, by following this technique user data can be protected against insider theft attacks and any malicious activity 

can be detected. As in the analysis the average fluctuation shows the difference between the access behavior of the user 

and the decoy technology is also effective in confusing the attacker and making the attacker believe that it is a useful file 

for the attacker. Through this research we concluded that decoy technology and fog computing together can provide 

security to real world problems like insider data theft attacks. 

 

VI. CONCLUSION 

In this paper, we have created a model which can detect the insider theft attacks. The algorithm which we have used for 

detecting the abnormality in access behavior of the user has given accurate results and is more efficient than previous 

algorithms. With the help this security mechanism we can identify the user access pattern and also fog computing helps 

in finding the location of the user if it is detected as an attacker. In fog computing all the logs are cached at a location 

near to the user, therefore it is easier to retrieve the logs and identify the user behavior. The detection criteria should be 

such that the abnormality or any anomaly is detected accurately. By increasing the number of user‟s cases we can get 

more accurate results. The system should be able to recognize the pattern generated earlier when the legitimate user 

had accessed the file system. For these reasons proper learning should be provided to the system so that it could detect 

the abrupt changes in behavior of the user if it is not authorized or is an insider. More over the location based 

identification is also included to ensure the overall security in the future also by resolving this chronic problem. 
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