e-ISSN (0): 2348-4470

Scientific J lofI t Fact SJIF): 4.72
cientific Journal of Impact Factor () 5-ISSN (P): 2348-6406

International Journal of Advance Engineering and Research
Development

Volume 4, Issue 12, December -2017

Heterogeneous Network Management Functionalities For
Better Communication Quality

Charu Gupta®

ME-Digital Communication, Department of Electronics & Communication Engineering, MBM Engineering College,
JNV University, Jodhpur-342011

ABSTACT- This paper provides historical overview of operating systems for mobile devices which builds the foundation
for the usage of the Android mobile platform. This introduction is not connected to any product or brand and is therefore
usable for everyone. The paper compares Android to the already existing and mostly used platforms “Symbian OS” and
“Windows Mobile”. This deepens the understanding and shows the main advantages and disadvantages. The paper
anticipates with application of android for Telematics taking in account android system design to utilize multiple
network access and Telematics services.

Keywords -Telematics, Heterogeneous network, Android.
1 INTRODUCTION

Before Android, mobile developers faced many roadblocks when it came to writing applications. Building the better
application, the unique application, the competing application, the hybrid application, and incorporating many common
tasks such as messaging and calling in a familiar way were often unrealistic goals. The Motorola Dyna TAC 8000X was
the first commercially available cell phone. First marketed in 1983, it was 13 x 1.75 x 3.5 inches in dimension, weighed
about 2.5 pounds, and allowed us to talk for a little more than half an hour. We called it “The Brick,” and the nickname
stuck for many of those early mobile phones we alternatively loved and hated. About the size of a brick, with a battery
power just long enough for half a conversation, these early mobile handsets were mostly seen in the hands of traveling
business execs, security personnel, and the wealthy. First-generation mobile phones were just too expensive. The service
charges alone would bankrupt the average person, especially when roaming. Early mobile phones were not particularly
full featured. These early phones did little more than make and receive calls and, if you were lucky, there was a simple
contacts application that wasn’t impossible to use. These first-generation mobile phones were designed and developed by
the handset manufacturers. Competition was fierce and trade secrets were closely guarded.

Manufacturers didn’t want to expose the internal workings of their handsets, so they usually developed the phone
software in-house. These early phones were flawed, but they did something important—they changed the way people
thought about communication. As mobile phone prices dropped, batteries improved, and reception areas grew, more and
more people began carrying these handy devices. Soon mobile phones were more than just a novelty. Customers began
pushing for more features and more games. But, there was a problem. The handset manufacturers didn’t have the
motivation or the resources to build every application users wanted. They needed some way to provide a portal for
entertainment and information services without allowing direct access to the handset.By this time, professional Web sites
were full color and chock full of text, images, and other sorts of media. These sites relied on JavaScript, Flash, and other
technologies to enhance the user experience

* P. G. Scholar, Department of Electronics & Communication Engineering, Fac. of Engg. & Arch., M. B. m. E. C,,
J.N.V. University, Jodhpur

and were often designed with a target resolution of 800x600 pixels and higher. Mobile devices have steadily gained
acceptance as a multimedia platform. Current tools offer application developers options to use various technologies—for
example, Java, Open C, Python, Flash Lite, XHTML/CSS, JavaScript, and Mobile Ajax—to implement highly functional
mobile applications. Content developers can work with audio, video, multimedia messaging, and Flash to create rich and
compelling mobile content. Although the choice of development platform is largely market-driven, it also depends on the
characteristics of available platforms and the requirements of particular applications.

Handset manufacturers realized that if they wanted to continue to sell traditional handsets, they needed to change their
protectionist policies pertaining to handset design and expose their internal frameworks, at least, to some extent. A
variety of different proprietary platforms emerged—and developers are still actively creating applications for them. Some
Smartphone devices ran Palm OS (now Garnet OS) and RIM Blackberry OS. Sun Microsystems took its popular Java
platform and J2ME emerged (now known as Java Micro Edition [Java ME]). Chipset maker Qualcomm developed and
licensed its Binary Runtime Environment for Wireless (BREW). Other platforms, such as Symbian OS, were developed
by handset manufacturers such as Nokia, Sony Ericsson, Motorola, and Samsung. The Apple | Phone OS (OS X | Phone)
joined the ranks.

@IJAERD-2017, All rights Reserved 192

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 4, Issue 12, December-2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

For manufacturers and mobile operators, handset product lines became complicated fast. Platform market penetration
varies greatly by region and user demographic. Instead of choosing just one platform, manufacturers and operators have
been forced to sell phones for all the different platforms to compete. For instance, Symbian phones often also support
J2ME.The mobile developer community has become as fragmented as the market. It’s nearly impossible to keep track of
all the changes in the market. Developer specialty niches have formed. The platform development requirements vary
greatly. Mobile software developers work with distinctly different programming environments, different tools, and
different programming languages. Porting among the platforms is often costly and not straightforward. Keeping track of
handset configurations and testing requirements, signing and certification programs, carrier relationships, and application
marketplaces have become complex spin-off businesses of their own.

Android, Inc. was founded in Palo Alto, California, United States in October, 2003 by Andy Rubin, Rich Miner, et al. to
develop, in Rubin's words "...smarter mobile devices that are more aware of its owner's location and preferences." Key
employees involved in the founding of Android Inc. include Andy Rubin, also the co-founder of Danger Inc., Andy
McFadden, who worked with Rubin at WebTV, and Chris White, who led the design and interface of WebTV Other
crucial employees includes Richard Miner, a co-founder of Wildfire Communications, Inc. and former vice-president of
Technology and innovation at Orange, and all those of whom brought considerable wireless industry experience to the
company. Despite the obvious past accomplishments of the founders and early employees, Android Inc. operated
secretively, admitting only that it was working on software for mobile phones. The Android mascot is a little green robot
as shown in the figure

Google acquired Android Inc. in August, 2005, making Android Inc. a wholly-owned subsidiary of Google Inc. Key
employees of Android Inc., including Andy Rubin, Rich Miner and Chris White,
stayed at the company after the acquisition. Google’s motivation for supporting the Android project

aNn>o=0ID

Figure 1 Android Mascot

seems to be having Android everywhere and by doing that, creating a level playing field for mobile devices. Ultimately,
Google is a media company, and its business model is based on selling advertising. If everyone is using Android, then
Google can provide additional services on top of it and compete fairly. This is unlike the business models of other
software vendors who depend on licensing fees. Although Google does license some proprietary apps, such as Gmail and
Maps, and makes some money off the Android market, its primary motivation is still the advertising revenue that those
apps bring in.

The Android operating system was designed from the ground up to be a comprehensive open source platform for mobile
devices. It is a game-changer in the industry and it is enjoying great success.

1. GOOGLE ANDROID

The term “Android” has its origin in the Greek word andr-, meaning “man or male” and the suffix - eides, used to mean
“alike or of the species”. This together means as much as “being human”. Android is a software stack for mobile devices
which means a reference to a set of system programs or a set of application programs that form a complete system. This
software platform provides a foundation for applications just like a real working platform.

Android is a comprehensive platform, which means it is a complete software stack for a mobile device. For developers,
Android provides all the tools and frameworks for developing mobile apps quickly and easily. The Android SDK is all
you need to start developing for Android; you don’t even need a physical phone. For developers, Android provides all the
tools and frameworks for developing mobile apps quickly and easily. The Android SDK is all you need to start
developing for Android; you don’t even need a physical phone. Android is an open source platform. The entire stack,
from low-level Linux modules all the way to native libraries, and from the application framework to complete

@IJAERD-2017, All rights Reserved 193

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 4, Issue 12, December-2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

applications, is totally open. More so, Android is licensed under business-friendly licenses (Apache/MIT) so that others
can freely extend it and use it for variety of purposes.

Google Android is a recent operating system, designed for mobile devices that perfectly fits to embedded devices such as
those used for automotive infotainment. A fundamental feature of Android consists in its openness: a free SDK (Software
Development Kit) is available for developers who wish to address this platform. Android is a software platform
developed specifically for mobile devices, it includes an operating system, middleware and a few bundled applications.
The full project is released under Apache version two license, which basically has no copy left clause. In agreement with
the Web 2.0 paradigm, information sharing between different processes and applications is possible though content
providers. The platform provides a few native content providers (e.g. media, contacts, etc.) and new ones can be added,
so enabling the developers to build rich peer-to-peer applications.

2.1 Architecture overview:
The high-level architecture of Android consists of five main components:
* Linux kernel,
+ Libraries,
* Android runtime,
» Application framework,
» Applications.

APPLICATIONS

Broszar

APPLICATION FRAMEWORK

Aoty L1JlhL= =it Coriert e Mtiticaticn
LEGEl Sy Il =i i Pl char Sitam ey el]y

Package Telephior FeE=auro= Locsiion i FF
M=riage M =rager M=riage armge Sardos

LIBRARIES ANDREOID EUNTIME

Hac= = e Corg

M=riap Libraries

D& ik wirluisl
hachine

LINUX KERNEL

Wlsrsgemard

Figure 2. Android Architecture

At the bottom of the hierarchy there is the Linux Kernel. Basically, it is the 2.6.27 version of Linux Kernel, to which are
applied Android specific patches. This element is responsible of managing the core system services and driver model.
The root files system uses rootfs, whereas data and system are using YAFFS, which is a file system specifically designed
for NAND and NOR Flash drives. The application framework and Android runtime rely on a set of C/C++ libraries. The
set of libraries include the standard C libraries, media libraries, graphical libraries, a browser engine (LibWebCore), font
libraries (Free Type), and database libraries (SQLite). The Android runtime consists of Core libraries and The Dalvik
Java virtual machine. Dalvik is optimized to allow multiple instances of the virtual machine to run at the same time using

@IJAERD-2017, All rights Reserved 194

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 4, Issue 12, December-2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

a limited amount of memory. Each instance runs in a separate Linux process. The application framework is a large set of
classes’ interfaces, and packages. Its goal is to provide an easy and consistent way to manage graphical user interfaces,
access resources and content, receive notifications, or to handle incoming calls. The main components are: the view
system, the activity manager, content providers, the resource manager, the notification manager, and the telephony
manager.

2.2 Inter-application communication:

Google Android has two inter-application communication modes: intents and code binding. The intents framework
provides a high level Inter Process Communication (IPC). This is the best way to implement dynamic functionality
binding between applications developed using the SDK. The Intent class contains several fields describing what a caller
would like to do. Intent fields include the desired action, category, and data string, MIME type of the data, handling
class, and security restrictions. Intents can be used to launch activities, to send data in broadcast, and to start services.
The security restrictions are implemented using the permissions framework provided by Android.

In the Android platform one process normally cannot access the memory of another process. Therefore to communicate,
two processes need to decompose their objects into primitives that the operating system can understand, and marshal the
object across the process boundary. The Android Interface Definition Language (AIDL) tool provided with SDK creates
the marshalling code automatically. AIDL is an Interface Description Language (IDL) used to generate code that enables
two processes to interact using IPC. The AIDL IPC mechanism uses a proxy class to pass values between the client and
the implementation.

Basic application components of android have been listed in the table below:

Ul component typically

Activities)
corresponding to one screen.

BroadcastReceivers | Respond to broadcast Intents.

Faceless tasks that run in the

SEnVcSs background.

ContentProviders | Enable applications to share data.

Figure 3. Application Component of Android

Activities: Typically correspond to one screen in a Ul. But, they can:
e be faceless
e Dbe in a floating window
e returnavalue

Intents: Think of Intents as a verb and object; a description of what you want done Examples: VIEW, CALL, PLAY,

etc. System matches Intent with Activity that can best provide that service. Activities and Broadcast Receivers describe
what Intents they can service in their Intent Filters (via AndroidManifest.xml)

@IJAERD-2017, All rights Reserved 195

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 4, Issue 12, December-2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

Ad

Home ﬁ
Contacts

“p: 3] Photo =
Pick photo Gl .

e (D Ne.w‘ components can use
existing functionality

Blogger a ‘

Figure 4. Intents
Broadcast Receivers: Components designed to respond to broadcast Intents. Think of them as a way to respond to
extern notifications or alarm Applications can invent and broadcast their own Intents as well

Services: Faceless components that run in the background Example: music player, network download, etc. Bind your
code to a running service via a remote-able interface defined in an IDL Can run in your own process or separate process

Content Providers: Enables sharing of data across applications Examples: address book, photo gallery, etc. Provides
uniform APIs for: querying (returns a Cursor) delete, update, and insert row. Content is represented by URI and MIME
type.

2.3 Important features integrated in Android:
Android offers many features cover many areas such as application development, internet, media and connectivity. Some
of the most important ones are presented in the following list:

e Application framework enabling reuse and replacement of components

e Dalvik virtual machine optimized for mobile devices

e Integrated browser based on the open source Web Kit engine

e Optimized graphics powered by a custom 2D graphics library; 3D graphics based on the OpenGL ES 1.0
specification (hardware acceleration optional)
SQL.ite for structured data storage
Media support for common audio, video, and still image formats (MPEG4, H.264, MP3, AAC, AMR, JPG,
PNG, GIF)
GSM Telephony (hardware dependent)
Bluetooth, EDGE, 3G, and Wi-Fi (hardware dependent)
Camera, GPS, compass, and accelerometer (hardware dependent)
Rich development environment including a device emulator, tools for debugging, memory and performance
profiling, and a plug-in for the Eclipse IDE.

1. COMPARISION OF ANDROID WITH OTHER OS

A mobile system is a computer system which isn’t linked to a certain place. It is possible to move it or carry it around
like e.g. a cell phone, a handheld or a special computer system in a car. Mobile devices have changed their profile
dramatically in the last years. The advanced mobile phones of today integrate fully-featured personal digital assistant
(PDA) capabilities with those of a traditional mobile phone. Here we examine the critical factors for operating systems in
this market which differentiate them from each other. The classification of operating systems has to consider the market
in which they are used. The market for advanced mobile devices is hard to compare to other markets like the PC market
where also operating systems are used. User needs and requirements are different.

For the purpose of comparison. Technical aspects of these systems have to be considered; also user needs are very
important. Because user needs differ the identification of an ideal operating system is not possible. Only a classification
or an optimal solution relating to a certain group of individuals is possible. In the following we will have a look at
classification criteria which are important to compare operating systems.

@IJAERD-2017, All rights Reserved 196

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 4, Issue 12, December-2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

e T T T

Software architecture and technical issues

Footprint

Runtime memory
requirement

Memory
management

Device support

User interface
(Ul) components

Development
languages

Packaging

Deployment
methods

Server-side
technologies™

Persistent
storage and
database support

~128 Kbytes for storage of
kernel-based virtual machine
and associated libraries

< 0.5 Mbytes

Automatic memory management
provided by the traditional
garbage collector, which
deallocates memory occupied

by objects that the program no
longer uses

All devices support Connected
Limited Device Configuration
(CLDC), Mobile Information
Dance Profile (MIDP)
(practically, lacks support only
for Windows Mobile-based
Pocket PCs)

High-level LCDUI components,
such as Form or List; low-level
LCDUI for controlling every Ul
pixel; support for SVG (defined
in JSR 287); J2ME Polish allows
design along with animations
and effecis specified in external
CSS-like files

Java (CLDC/MIDP)

Java Application Description
(JAD) and Java archive {JAR)
files

Over the air (OTA), Bluetooth/
IR, Wireless Application Protocol
(WAP) push

Java serviets, JavaServer Pages
{JSP)

RMS and Perst Lite from
mObject

1.55 Mbytes on
Windows Mobile-based
Pocket PC 2000/2002;
1.35 Mbytes on
Windows Mobile for
Pocket PC 2003 or
Windows CE .NET
devices

~ 0.5 Mbytes

Automatic memory
management provided
by Common Language
Runtime {CLR); the
CLR garbage coflector
manages the allocation
and release of memory
for an application

Pocket PC 2000,
Pocket PC 2002,
Windows Mobile
2003-based Pocket
PCs and smartphones,
embedded systems
running Windows CE
.NET 4.1 and later

Windows Forms
controis (vary for
Pocket PCs and
smartphones)

C#, Visual Basic .NET

Cabinet (CAB) file
installers

OTA, Bluetooth

ASP.NET Mebile
Controls

Local database support

for SQL Server Mobile
Edition; on the server

side, support for SQL

Server

450 Kbytes for the
core library of Flash
Lite 2.1; 374 Kbytes
for Flash Lite 3.1

2—-4 Mbytes

Garbage collection
executed
automatically every
minute or whenever
an application’s
memory use
increases by 20
percent of more

Mobile phones and
PDAs from major
manufacturers such
as Fujitsu, Hitachi,
LG, Mitsubishi,
Motorola, Nokia,
Panasonic, Samsung,
Sanyo, Sharp, and
Sony Ericsson

Nokia Flash Lite
Feather Framework
(FL 2.x), Sony
Ericsson Adobe XD
Ul components
(FL1.1/2.%)

ActionScript 1.0,
ActionScript 2.0

SWFfiles

Bluetooth, physical
cable, OTA

Flash Media Server
(uses ActionScript 1
for server-side iogic)

Persistent storage
through shared
objects; on the server
side, support for
interaction with PHP
scripts and use of
MySQL database

Figure 5. Comparison of Android with other OS

3 Mbytes

Minimum 32 Mbytes of
RAM

Automatic memory
management handled by
Dalvik's garbage collector;
garbage coliections might
noticeably decrease
performance

Mostly HTC devices (Magic,
Hero, Tatioo); also T-Mobile
{G1, Pulse), Motorofa Dext,
Samsung Galaxy i7500.
Acer Liquid, Sony Ericsson
Xperia X10; Android
2.0-compatible handsets
announced (Motorola,
Samsung)

View and ViewGroup
objects; DroidDraw tool
serves for rapid Ul design;
J2ME Polish enables
conversion of Java ME
MiDiets’ Ul to Android-
compatible Ul

Java (Android SDK)

Android package (APK) files

OTA, Bluetooth

Java servlets, JSP

Android APIs contain
support for SQLite database

The proposed heterogeneous network management algorithm integrates the channel estimation information to estimate
the change of adaptive signal-tracking decay, and also improves the estimation handover correctness and reduces the
system computation load.

IVV. ANDROID SYSTEM DESIGN AND IMPLEMENTATION FOR TELEMATICS SERVICES

The rapid progress of wireless communication in recent years extends the information and communication services from
digital homes to mobility life. Different types of wireless communication technologies are widely applied to our daily life
so that the demands for accessing internet resources through wireless devices also increase rapidly.

This application aims to design an Android-based mobile device platform that integrated with network management
functions and MOST (Media Oriented Systems Transport) technologies to utilize multiple network access and Telematics

@IJAERD-2017, All rights Reserved

197

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 4, Issue 12, December-2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

services. The platform composed a heterogeneous network management algorithm which includes roaming and sharing
functions to maintain the qualities of services and satisfy different kinds of scenario needs. The proposed heterogeneous
network management algorithm not only manages the heterogeneous networks handover, but also provides efficient
resource sharing in the heterogeneous network environment. We also design the seamless handover functionality in the
proposed algorithm to support the ubiquitous computing. Implementation of the proposed heterogeneous network
management algorithm is based on the Android-based mobile device platform. The proposed Android-based mobile
device platform integrating with heterogeneous network technologies can be applied for many scenarios in our life to
realize ubiquitous services sharing and roaming for various network environments.

4.1 System Architecture:

The developed system integrates technologies of heterogeneous networks management and Android software system
design. The system can serve as a Home Entertainment Gateway, a Vehicle On-Board Unit (OBU), or a portable network
device. People can access the wired/wireless Internets more conveniently and effectively via the system. The developed
system equipped with heterogeneous network interfaces can provide with two functions: Roaming and Sharing. The
Roaming function indicates that the system can search and choose the wireless network with best resources (ex: RSS,
Bandwidth) for users according to the surrounding environment. This is especially helpful when the system is used for
roaming between the homogeneous or heterogeneous networks. The Sharing function indicates that the system can
allocate the available resources to all users when the system is connected with multiple wired/wireless networks.

The heterogeneous networks management technology is very important to be implemented for analyzing the multiple
network/user conditions, and deciding the resource allocation policy. The communication link of network and physical
layer are adjusted adaptively based on the handover decision. The technology also considers the seamless roaming issues
to provide better QoS (quality of service) for users.

4.2. Algorithm Design:

4.2.1 Methodology

A heterogeneous network management algorithm has been designed to maintain the qualities of access networks and
services. The proposed algorithm shown in Fig. cooperates with Roaming function and sharing function according to the
situational application. When the system starts up, the system will detect the available network resources and the status of
environment. The system decides to use Roaming or sharing function according to this information or by user
commands. The algorithm of the heterogeneous network management can be divided into three processes, and the details
of each process are described as follows:

1. Handover Control Process:
The middle part of the flowchart shows the process of handover control which includes four steps from physical layer to
application layer to guarantee the QoS. The first step of this process is handover initialization step. The Network
Analyzer function monitors the status of networks and predicts the power gain or SINR (Signal to Interference and Noise
Ratio) variation of each network. When the system discovers the signal qualities of networks occurring significant
variation, the Network Analyzer function notifies the Roaming Function and Sharing Function Processes for the
handover initialization.

At the second step of this process, the On-line Service Analyzer function receives the information of available network
resources sent from Search New Link module of the Roaming Function Process and examines the characteristics of user
services sent from the user/service management module of the Sharing Function Process. Then it decides whether to
execute vertical or horizontal handover and reallocates resources to on-line services based on their priorities.

At the third step of this process, if the handover type of a service is vertical handover, the Higher Layer Establish
function will setup a new service thread for this service. The new service thread uses the primitives which are established
by the vertical handover and Network Link Establish modules to communicate with the new network attachment point
(NAP) and continues the old service process. The new service thread will connect to the other communication party via
the primitives which establishes new network layer and link layer connections using Heterogeneous NIC. After the new
service thread is established, the old service thread connected to the original network attachment point breaks. This is
intended to provide seamless services.

At the finally step, the system will release the old service process and the old network resource to complete the handover
control process. The services will be continued by applying the handover control process at upper layer even if the
physical communication link is changed when roaming between the heterogeneous networks.

2. Roaming Function Process

The right half part of the flowchart shows the process of the Roaming Function which manages the physical layer
handover of the system. The Roaming Function is responsible for choosing the most appropriate network interface
according to the surrounding environment. When the Roaming Function is enabled, the system analyzes the qualities of
used networks. The Search New Link function checks the network information sent from the Network Analyzer function
to see if necessary to search the new network link for the handover preparation or not. When the quality of used network

@IJAERD-2017, All rights Reserved 198

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 4, Issue 12, December-2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

is going down, the system will search new candidates with better link performances. Next, the Network Layer Establish
function will reserve the old IP and routing table information to keep the connections of used services continuously on
original communication links, until new IP and routing table of new communication link has been setup. And then
applies the Higher Layer Establish function of Handover Control Process to execute the seamless service handover at
Application Framework Layer. If there is only single wireless network interface, the system will execute the horizontal
handover to make the network interface connecting to the NAP with better signal strength or bandwidth according to the
information sent from Search New Link function.

Next, the Network Layer Establish function will change the IP and routing table information according to the new NAP
for the change of communication links, and then applies the Services Handover function of Handover Control Process to
execute the service handover at Application Layer. The handover functions will send the selected NICs' information
including RSSI, SINR, and QoS parameters to the Network Analyzer function of Handover Control Process for analyzing
the qualities of used networks and services handover constraints.

3. Sharing Function Process

The left half part of the flowchart shows the process of the Sharing Function which uses Resource Management function
to control the network layer handover of the system. The Sharing Function is used to allocate the available network
resources for users. When the Sharing Function is enabled, the system analyzes the qualities of used networks. The User
Link Detection function detects the user connections and the active NIC statuses sent from Network Analyzer function to
see if any network resource varied. If there exists any NIC being removed from the system or added to it, the Network
Capability Setup function (NCS) will analyzes the QoS parameters sent from the User Link Detection function, and
classifies the connected networks into several groups of different qualities. If there exist any user joining to the sharing
network or leaving from it, the Service Requirement Setup (SRS) function will update the users' information which
includes user preference and the characteristics of online services (ex: the bandwidth, service type, delay, packet loss
rate, etc.). Then SRS classifies services into several groups of different QoS requirement according to the service
characteristics.

As either of NCS and SRS is enabled, the Resource Management function will be triggered to rearrange connections
between the NICs and services according to the information provided by NCS function and SRS function. The loading
ratio of each service group of each NIC will be derived. Then the service number in each NIC could be decided. Finally,
the Network Layer Setup function setups the network routing tables with user services and NIC configured by Resource
Management function. The results of the resource management will be sent to the Service Handover function to execute
the Handover Control Process.

Startup
v
Environment
RSS, SNR sy — . GPS..
" Detection e
e e e V— ¥ HO Initialization
Sharing Process Hariiover Covtrol Roaming Process
Process
2
User Link Network
D ———
Detection Analyzer
i Y —
Network Service 1
Capability Requirement
Si’q»lp p :
—v = on':;‘": s:nce Vertigpl HO Horizental HO
Resource e Make Physical
Management l before Break Connection
Network Layer Higher Layer Network Layer Network Layer
Setup Establish Establish Establish
l v
> Sevvice
Handover HO Commitmers
__________________ RS P S R R SIS
Resource
HO Completiop
Release HO: Handover

Figure 6. Flow Chart of Heterogeneous Network

@IJAERD-2017, All rights Reserved 199

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 4, Issue 12, December-2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

V. CONCLUSION AND FUTURE SCOPE

In this paper, we proposed an Android-based mobile device platform which provides the heterogeneous network
management functionalities to guarantee the communication quality. In order to achieve ubiquitous computing, the
proposed algorithm supports seamless handover via effective and rapid resource and handover managements between
heterogeneous networks. In the future, we will design a more sophisticated resource management algorithm to enhance
the QoS during the network roaming and sharing processes. The algorithm will provide all resources of heterogeneous
network interfaces of the system for multi-users sharing, and achieve an intelligent load-balance state of the system.

REFERENCES

(@ “Development Platforms for Mobile Applications: Status and Trends”, Damianos Gavalas and Daphne Economou,
University of the Aegean. (2011)

(b) “An Android System Design and Implementation for Telematics Services”, Yong-Hua Cheng, Wen-Kuang Kuo,
Szu-Lin Su, Institute of Computer and Communication Engineering Department of Electrical Engineering National
Cheng Kung University, Tainan, Taiwan.(2010)

(c) “Android/OSGi-based Vehicular Network Management System”, Teng-WenChang Department of Electrical
Engineering, National Taiwan University, Taipei, Taiwan.(2010).

(d) Kim, C.S., Kim, J.I., Han, W.Y., Kwon, O.C., "Development of OpenTelematics Service Based on Gateway and
Framework", Proc. of thel CACT, 2006, pp.1349-1352.

(e) Han, W.Y., Kwon, O.C., Park, J.H., Kang, J.H., "A Gateway and Framework for Interoperable Telematics Systems
Independent on Mobile Networks", ETRI Journal, V01.27, No.1, 2005, pp.106-109.

() Gomi, Y., Weiland, RJ., "An Open Platform for Telematics", Proc. of the ITS World Congress, 2005.

(9) Kim, C.S. Kim, J.I., Kwon, O.C., "Telematics Transport Gateway for Telematics Systems Independent on Mobile
Networks", Proc. of the ITS World Congress, 2005.

@IJAERD-2017, All rights Reserved 200

