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Abstract — The working operation of the transmission station problem of compressor stability and  it was a experienced 

that manifested itself when new compressor and non-return valves were put in to working condition . The model is used 

to judge the problem and suggest solution in order that the system may operate satisfactory. The first part is discusses 

the extension and validation of the program so that the gas transmission may be considered. 

 

Keywords- Centrifugal Compressor, Duct line, CFD, Valve, Downstream, Fluid, Algorithm, Model, Element 

 

1.INTRODUCTION 

 

Computational Fluid Dynamics constitutes a new ―Third approach‖ in the philosophical study and development of 

the whole discipline of fluid dynamics. In the Seventeenth century, the foundations for experimental fluid dynamics were 

laid. The Eighteenth and Nineteenth centuries saw the gradual development of theoretical fluid dynamics. As a result, 

throughout most of the Twentieth century, the study and practice of fluid dynamics  involved the use of pure theory on 

the one hand and pure experiment on the other. The learning of fluid dynamics as recently as, say, 1960, involved 

operating in the ―Second-approach world‖ of theory and experiment. However, the advent of the high speed digital 

computer combined with the development of accurate numerical algorithms for solving physical problems on these 

computers has revolutionized the way we study and practice fluid dynamics today. It  introduced a fundamentally 

important new 3rd approach in fluid dynamics – the approach of CFD. Computational Fluid Dynamics (CFD) is a latest 

tool of fluid analysis software predicts the interaction of a working fluid with its geometrical surroundings and 

operational environment. Accurately predicting these interactions is highly dependent on understanding the energy loss 

models embedded within the design code. These loss models dictate how severely performance diminishes due to 

inherent or sometimes improper geometrical and operational constraints. Such energy losses include skin friction, 

excessive pressure recovery, airfoil incidence, flow recirculation, and blade tip leakage to name a few.  

 

2. Patching Procedure for the Gas Transmission Station 

 

The section of the pipe work Fitted with the compressor station initially modeled is shown in Fig second case 

where further downstream ducting was considered. 

 
Figure 2.1 Element Distribution 
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The initial gas circuit (Fig. 2.1) was first Convert into shorter elements by applying the equalized volume and 

the frequency parameter.. The element volumes, areas and lengths derived were 0.32m
3
, 0.29m

2
 and 1.1m respectively. In 

using such a (geometrical) distribution it was apply that the model was capable of simulating a wave of frequency up to 

70 Hz. 

This system was then divided into a main system and three sub systems as follows. 

1. Main system: System (1) from element 1 to element 48. 

2. 1st sub-system System: (2) from element 49 to element (the recycle loop) 58. 

3. 2nd sub-system: System (3) element 59. 

4. 3rd sub-system: System (4) from element 60 to element 63. 

 

3. System Boundary Conditions 

 

(a)  Main system 

The  infinite volume (nearly) boundary condition was used to define this system entry pressure and system exit 

mass flow. It was assumed that due to the large (near infinite) volume of the upstream pipe work the acoustic infinite 

volume upstream of element (1), and upstream of element (2) were identical. Similarly it was assumed the impedance 

downstream of element 48 and element 47 were similar. Applying the infinite volume boundary condition  the system 

entry pressure and system exit mass flow rate are given by, 
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(b) System (2) 

The entry pressure for the system is equal to the mean pressure in the branch element (in Fig. 6.3). 

The exit mass flow from the system is to get by the nozzle relationship. The pressure ratio across the nozzle is 

determined by the ratio of the pressure in the last element of the system to the mean pressure in the branch to which the 

system is exhausting (i. e. pressure ratio 
58 25RP P / P , where 

25P is the mean pressure in element 25). Therefore the 

system exit mass flow rate is 
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(C) Systems (3) and (4) 

Initially the non-return valve element 63 (Above Fig.) was closed irrespective of the pressure difference across 

the element. Therefore the exit mass flow rate leaving systems (3) and (4) were put to zero, The entry pressure to these 

two systems is determined by the mean pressure in the branch elements 21 and 45. 
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4. FINITE ELEMENT ANALYSIS: 

 By applying above boundary conditions to CAD model of duct system in FEA model, following results are 

obtained. 

 
Figure 4.1 Velocity distributions in duct 

 

 
Figure 4.2 Pressure distributions in duct 

 

5. Simulation Results 

 

The compressor characteristic provided was reproduced on the basis of polytropic head against volume flow rate 

(Fig. 4.1). The selected speed for the simulation was 6,500 rpm and, for the first set of tests, assumed constant. 
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Figure 5.1 Compressor Characteristic Polytropic Head vs. Volume Flow Rate 

 

A series of validation tests were conducted. 

 

 

6. Variable Speed Simulation with Further Duct Work Downstream 

 

Further duct work was added in the simulation, also some of the upstream duct work was removed. This was 

necessary in order to have sufficient computer memory available. Furthermore the simulation with further duct work 

downstream was  to be of much interest as it was here that transients were likely (in below Fig.) to occur. The patching of 

the stub pipes shown is similar to the case when the non-return valve was suppose closed irrespective of the pressure 

difference across it. 

Again the deceleration was at 500rpm per second and the speed transient was introduced after 0.02 seconds of 

steady state working. The simulated results, where the pressure across the compressor element and the corresponding 

entry mass flow during the transient are shown in below Figs. respectively. The transient running line of the compressor 

characteristic is shown in below Fig. The compressor outlet pressure drop during the transient is larger when compared 

with the smaller system below fig. The transient working line on the compressor characteristic is also steeper for this 

case. This is due to the increased frictional loss that has resulted by the addition of further duct work downstream. 
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7. CONCLUSION 

 

The Model behavior with respect to stable operation, transients from one stable point to another has been 

successfully analyzed. Other transients such as perturbations introduced into the system have also been reasonably 

analyzed. The phenomenon where the compressor becomes less stable as the compressor operating point approaches 

surge is clearly mentioned. The ability for the transient operating point to leave the steady state characteristic was also 

demonstrated. 

The surge cycle simulations give us excellent results. The fall in the compressor outlet mean pressure, due to a 

non-linear characteristic was well given. The model also has ability to incorporate anti-surge controllers, and we may be 

check test the efficiency of control systems used in process plants. 

Further the development of the boundary condition for use in an "in finite" system seen to have been very 

successful. 
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