
International Journal of Advance Engineering and Research

Development

Volume 5, Issue 05, May -2018

@IJAERD-2018, All rights Reserved 48

Scientific Journal of Impact Factor (SJIF): 5.71
e-ISSN (O): 2348-4470
p-ISSN (P): 2348-6406

IMPROVEMENT OF SPARK STREAMING THROUGH BATCH SIZING

WITH PERFORMANCE ANALYSIS

(Spark streaming improvement)

Miss Urvashi Damor
1
,

Dr. D.A.Parikh

2

1
M.E. Student, Computer engineering, L.D. College of Engineering, Gujarat, India,

2
Head of Department, Computer Engineering Department, L D College of Engineering, Gujarat, India

Abstract —The need for real-time processing of “big-data” has led to the development of framework for distributed

stream processing in cluster. It is important for such framework to be robust against variable operating conditions such

as server failures, changes in data ingestion rates, and workload characteristics.

To provide fault tolerance and efficient stream processing at scale, recent stream processing framework have proposed

to treat streaming workloads as a series of batch jobs on small batches of streaming data. The robustness of such

framework against variable operating conditions has not been explored.

We explore the effects of the batch size on the performance of streaming workloads. The throughput and end-to-end

latency of the system can have complicated relationships with batch sizes, data ingestion rates, variations in available

resources, workload characteristics, etc. We propose a simple yet robust control algorithm that automatically adapts the

batch size as the situation necessitates.

Keywords-Streaming; Spark; Batch Sizing; Spark Streaming; Dynamic Batch

I. INTRODUCTION

All manuscripts must be in English. There are without doubt many several approaches are available for the system to deal

with the real-time data records before it stored into database for example foremost common open supply platforms for

this apache spark. There are two elementary attributes of information stream process. First, every each and record within

the system should have a timestamp that is done in statically. In this cases, Streaming were created at compile time.

Second, every each record is processed because it arrives. These second attributes guarantee a system that may react to

the contents of each record, and may correlate across multiple records over time, even right down to time unit latency. In

distinction, approaches like Spark Streaming method information streams in batches, wherever every batch contains a

group of events that arrived over the batch amount (regardless of once the information were truly created). This can be

fine for a few applications like easy counts and ETL into Hadoop, however the shortage of true record-by-record

processes makes stream process and time-series analytics not possible.

In Existing Proposed System Recently projected frameworks have chosen to treat stream processing as fixed size batches

of received Streaming Data. These types of framework set static batch size according to system workload characteristics

which is done as Offline Profile Creation. In offline Creation, batch interval build based on cluster resources like

memory, CPU, Workload characteristics, etc. If any changes in the cluster resources (e.g., failed nodes, stragglers, new

resources, etc.) or workload characteristics (e.g., changes in the number of aggregation keys, etc.) would change the

actual behavior of the workload thus created profile will be useless. If unpredictable Incoming data is arrive into the

system so there are some limitations (i) As Batch Interval is fixed, it becomes difficult to handle the unpredictable

incoming data rate (ii) Increase in Latency.

Distributed system is used some stream processing for achieving high throughput and low-latency. In existing stream

data processing based on static data size. Data size based and fixed batch time based techniques have two challenges viz.,

profile modification in case of cluster resources and workload characteristics in case of unpredictable data rates as well

types of workloads .These leads to increase latency and decrease throughput. A statically set batch size may either incur

unnecessarily high latency under low load, or may not be enough to handle surges in data rates, causing the system to

destabilize. Few existing dynamic batch sizing techniques are less prone to these two challenges as they are based on

load shedding and offline learning. In load shedding, it loss the data which is not an option and aprior provisioning of

resources for handling unpredictably high loads can be expensive. So making use of dynamic batch sizing we overcome

these problems. This will improve the result of the throughput and the latency. In this work, we are proposing a control

algorithm which will handle the above challenges and dynamically set the batch interval time.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 5, Issue 05, May-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2018, All rights Reserved 49

1.1. What is spark?

Apache Spark is most important Open Source Cluster in Now Days as Computing Framework. Spark is used as an

interface for Programming Cluster and gives the Result of Fault-tolerance and data Parallelism. Spark has been used two

main part:

[1] Cluster Management

[2] Distributed Storage System

In cluster Management, Spark required Hadoop Yarn or Native Spark Cluster.

In Distributed Storage System, Spark requires Hadoop Distributed File System (HDFS) and Cassandra.

1.1. Architecture of Spark

Spark is tops level project for Apache Software Foundation. It provides more number of programming language and

spark support for the storage system.

Figure 1. Architecture of Spark

Spark Architecture has three main components:

[1] Data Storage

[2] Management Framework

[3] API

[1] Data Storage:

For Data Storage Purposes, Spark uses HDFS File System. It is work with Hadoop Data Source with Including HDFS,

Cassandra, HBase, etc.

Following Figure shows that the components of the spark architecture.

Figure 2. Components of Spark Architecture

[2] Resource Management:

Spark is deploying as impartial server and it can be run on Distributed Computing Framework like YARN or Mesos.

[3] API:

Spark based Applications create by Application Developers using a standard API interface. For many languages like

Scala, Java and Python Spark provides the API for these all.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 5, Issue 05, May-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2018, All rights Reserved 50

Spark Project is used main four libraries like Spark-Sql, Spark-MLlib, Spark-Streaming, and Spark-Graphx and also used

Spark-core for Making of new Application for spark Spark-core and one of them of four libraries are used for that

application.

II. HOW SPARK STREAMING WORKS

Spark Streaming is an extension of the core Spark API that enables scalable, high-throughput, fault-tolerant stream

processing of live data streams.

Figure 3. Structure of Spark Streaming

In Spark Streaming, there are three main events happen which are as following:

Figure 4. Working of Spark Streaming

(i) Input Data are comes from many sources like Twitter Live Data, Kafka and Flume.

(ii) Then, These Input Data are divided into some Batches.

(iii) These Batches of Data are processed by Spark Engine. It generates Final Output of Stream Data in Batches which are

placed into HDFS, File System and Database.

III. COMPARISION OF SPARK STREAMING WITH MULTIPLE APPROACH

There are unit several factors that have an effect on the performance of a stream process system - cluster size, similarity

of operators, batch sizes, etc. Previous literature have studied numerous techniques to adapt to changes in operation

conditions, either by elastically scaling the work or by discarding knowledge to shed load. However, in several sensible

use cases (stock ticks, bank transactions, etc.), losing of data in these fields are unacceptable.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 5, Issue 05, May-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2018, All rights Reserved 51

3.1. Traditional Approach (Static Spark Streaming)

In this type of Approach, Input Data are distributed on spark cluster. This data are accessing from that cluster and divided

into fixed size of data and proceed Fixed batch time slots depends on previous measurement of system capacity. Then it

generates the output. But if some time system is not robust due to the some reasons like server failure, more ingestion of

data rates at that time system performance is decrease so it increases latency and takes more time for the result.

A statically set batch size may either incur unnecessarily high latency under low load, or may not be enough to handle

surges in data rates, causing the system to destabilize.

3.2. Mordern approach (Dynamic Spark Streaming)

In this model, Input data are takes from the scala database and then create spark cluster and these all the data are

accessing from these cluster. But in this model have major advantage that it accessing not fixed size of data from the

cluster it took dynamically data and then generate batch slot as dynamically. So this model will helpful for maintain the

system stability due to the dynamically batch slot. And also decrease latency or increase more throughput.

So making use of dynamic batch sizing we overcome these problems. This will improve the result of the throughput and

the latency.

IV. DYNAMIC BATCH SIZING

In this section, we tend to initial describe intimately our downside formulation. Then we tend to discuss why some initial

solutions didn't reach the specified properties. Finally, we tend to discuss our algorithm rule which supported the

dynamic batch sizing.

We want to find changes in the operation conditions and consequently increase the batch interval so that the system

stability condition is maintained. Queuing delay can keep low, and therefore the system can stay stable at the upper rate,

though with a better latency.

4.1. Introduction

Our goal is extremely similar – we have a tendency to would like to adapt the batch interval supported the steadiness of

the streaming Data. Hence, at the primary look, one will devise an easy management rule that will increase the batch

interval if the operational purpose is within the unstable zone and contrariwise.

Dynamically adapting the batch interval may allow the system to adapt in our desired manner. We use dynamically

batching in spark streaming to adapt the batch size according to operating conditions. Following we describe why we

choose dynamic batch sizing and overcome limitations of static batch interval.

1) Benefits over static batch interval:

a) Achieving minimum batch interval

b) Ensure system stability

c) Speed

2) Depending on the workload, there are some limitations in static batch sizing, which is as following:

a) Larger batches of data may allow the system to process data at higher rates.

b) Data Size increased queue length also increase.

c) Increase the Processing Time.

4.2. How to Achieve Dynamic Batch Sizing

Input Streaming Data are comes from the any input source such as files, Streaming Dataset, etc. these input data are

proceed by the spark engine. At this, the streaming data are divides into some batches through default spark engine and

these divided batches are slicing as dynamically according to the system workload capacity.

These dynamically slicing of streaming data are adapting by the one control algorithm. CPU scheduler picks the process

from the queue. Using of this algorithm set the batch interval time and set the timer to interrupt after time slice and

dispatches it.

This control algorithm is useful to check the burst time of the system and dynamically set it according to the system

workload capacity so the system will become stable and gives the result as fast. It set the burst time according to the time

slice which is check following conditions and set the time slice.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 5, Issue 05, May-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2018, All rights Reserved 52

(i) Completion time is less than time slice, process will leave the CPU after completion and CPU will proceed with next

process in the ready queue.

(ii) Completion time is larger than time slice, timer will be stopped and caused interruption to the OS and executed

process is placed tail of the queue.

4.3. Algorithm

This algorithm is used for achieving the dynamic batch sizing on arriving spark streaming data. Streaming data are

slicing through dynamically at run time of the system. Algorithm is useful to slicing data according to the system

capacity using of dynamic batch sizing.

IV. CONCLUSIONS

In this proposed work, we are presenting control module for dynamically adapting the batch interval in batch stream

processing system such as spark streaming.

In this work, we would like to show that control algorithm improve response time, throughput and complexity by

comparing default spark streaming with the proposed one.

REFERENCE

[1] Ankush Verma, Ashik Hussain Mansuri, Dr. Neelesh Jain ,” Big Data Management Processing with Hadoop

MapReduce and Spark Technology: A Comparison” IEEE Symposium on Colossal Data Analysis and Networking

(CDAN), 2016.

[2] Xinyi Liao, Zhiwei Gao, Weixing Ji, Yizhuo Wang, “An Enforcement of Real Time Scheduling in Spark Streaming

” IEEE 2015.

[3] Omar Backhoff, Eirini Ntoutsi,” Scalable Online-Offline Stream Clustering in Apache Spark” IEEE 16th

International Conference on Data Mining Workshops, 2016.

[4] Subhash Kumar, “Evolution of Spark Framework for simplifying Big Data Analytics” IEEE International

Conference on Computing for Sustainable Global Development (INDIACom), 2016.

[5] Quan Zhang, Yang Song Ramani R. Routray,” Adaptive Block and Batch Sizing for Batched Stream Processing

System“IEEE International Conference on Autonomic Computing,2016.

