
 International Journal of Advance Engineering and Research 
Development 

Volume 5, Issue 04, April -2018 
 

@IJAERD-2018, All rights Reserved  2138 

Scientific Journal of Impact Factor (SJIF): 5.71 
e-ISSN (O): 2348-4470 
p-ISSN (P): 2348-6406 

REINFORCEMENT OF ROUTING PERFORMANCE IN WSN THROUGH 

DYNAMIC PROGRAMMING 

 
1
T.ANITHA, 

2
G.GAYATHRI 

 
1
ASSISTANT PROFESSOR CSE DEPARTMENT ANITS 

2
ASSISTANT PROFESSOR CSE DEPARTMENT ANITS 

 

Abstract—The Internet of Things has become a spotlight for a long period of time and generates massive amounts of sensor 

data. Thus, data centers play more and more crucial roles in processing and analyzing the explosively increasing data. To 

remedy the shortcomings of traditional tree-based structure, many novel server-centric network structures have been 

proposed in recent years. Their original routing mechanisms based on divide and conquer (DC) are not able to work out the 

shortest paths. So, there is still promotion room for communication delay reduction. Since dynamic programming (DP) is a 

classical strategy to obtain optimal solution, this paper proposes a routing mechanism based on DP and applies it to data 

center for better solving the weakness occurred by DC. Experiments firmly support the conclusion that adopting DP in 

routing calculation achieves appealing performance of short latency, great fault-tolerance and reasonable resource 

consumption. Theoretical analysis also proves that it is applicable to most popular structures. 

 

Index Terms—Data center, dynamic programming (DP), Internet of Things (IoT), routing. 

 

I. INTRODUCTION 
 

IOT refers to the networked interconnection of everyday objects [1] it is generally viewed as a self configuring wireless 

network of sensors whose purpose would be to interconnect all things[1]. The trend of the market is the information to be 

available independently of the place or the geographic location for this reason ,currently the internet is used to bring a real 

time interaction among devices that will not be possible with other mediums [2]. All the data gathered from the sensors must 

be available at the data centers to be managed and controlled. Thus a server-centric(central point of management) structure 

exists where the data from sensors remotely distributed is stored. Further, the industrial processes make necessary to 

implement wireless communication system (because of hostile environment and the difficult accesses to the places) to 

transmit the signals generated by the sensors making up the control [3] – [9] 

 

IOT heralds a vision of the future internet where connecting physical things from bank notes to bicycles, through a network 

will let them take an active part in the internet exchanging information about themselves & their surroundings. This will give 

immediate access to information about the physical world & the objects in it which leads to innovative services & increase in 

efficiency  productivity. According to Gartner, there will be nearly 26 billion devices on the IOT by 2020. ABI Research 

estimates that more than 30 billion devices will be wirelessly connected to the IOT by 2020 [10]. In the intervening period, 

the huge data generated by devices need to be organized in real time, which bring many challenges and workloads for IOT 

data centers. 

 

Large scale data center networks in wireless sensor networks with adequate performance are crucial to organize and examine 

the huge amounts of data. In purpose of promoting efficiency of the IOT , optimizing the performance of data center network 

is the necessary point. 

 

Any preferable data center networking should meet three requirements. 

 

1. Network architecture must be adapted to increased demands (scalable) and allow future development. 

 

2. Must be fault tolerant. 

 

3. High network capacity/volume/Potential & (short latency) less intermission to better supporting real-time services. 

 

In addition many scholars have proposed huge feasible schemes with the structures defined recursively, server centric ,which 

put linking and routing intelligence on servers instead of switches such as Dcell [10], Ficoun [11] , Totoro [12] , & so forth. 

 



International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 5, Issue 04, April-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406 
 

@IJAERD-2018, All rights Reserved  2139 

These structures help for fault tolerant capacity as the routing algorithms of most existing data center structure take advantage 

of the structural properties of symmetry & homogeneity and exploit divide and conquer (DC) approach to calculate 

forwarding path. 

 

 DC approach is simple but not effective as they cannot assure to get optimal solutions to reduce overhead and 

communication delay (jitter). 

 

 Dcell and Totoro both followed DC approaches on routing path. 

 

 All link nodes information needs to be altered/revised at short intervals in case of any modifications or failure. 

 

The basic principle of ARM is transferring the responsibility of path calculation on source server, the intermediate nodes only 

take charge of transmitting data packets. The validation and capacity of a path are confirmed by path probing scheme, thus 

broadcast can be omitted for saving bandwidth. Besides, our routing algorithm is based on DP, hence the shortest paths can 

be worked out primarily in path calculation process. The selection of paths and load balancing are achieved by path probing 

procedure. In the following parts, we will present the fundamental theory and implementation of our ARM. We will also 

prove the high efficiency and superior fault-tolerant capability of ARM at the support of extensive simulations. Moreover, 

our ARM is a propagable option which can be generalized to most other server-centric data center structures mentioned 

before. In this paper, we choose Totoro as the physical network architecture to test the performance of ARM. 

Our work has the following strong points: 

 

1) lower jitter; 

 

2) minimization of fault-tolerant capability; 

 

3) less resources consumption; 

This paper is organized as follows. Section II elaborates on ARM. Section III describes the implementations and Section IV 

use simulations to evaluate ARM. Lastly, Section V concludes this paper. 

 

II. ARM 
 

In this paper ,our ARM consists of routing algorithm and a path probing policy. As we know, the general routing algorithm is 

based on broadcasting link status in a broadcast domain, and the source and intermediate servers do repetitive calculations to 

find a next hop continually with the link status. This policy causes considerable waste of computation and network bandwidth 

automatically. Hence, we propose another routing mechanism called ARM to address this problem. Since the physical 

structure is estimable, the path to any destination host can be worked out by the source host exclusively. Intermediate nodes 

only take charge of forwarding data packets. Before moving to the detailed implementation of ARM, we first focus on 

presenting the basic algorithm, Athena routing algorithm (ARA), which is conducted by the source host. 

 

A. DP 
DP is a method for solving a complicated problem by breaking it down into several simple sub problems, solving them and 

then combine the solutions of them to find an overall solution for the whole problem. DP is usually used for optimization 

[13]–[15]. It has two properties, which are: 

 

1) optimal substructure and 2) subproblem overlap. Optimal substructure requires that the solved substructures at each step 

is always optimal. Subproblem overlap means that the solutions of subproblems overlap and thus the space of subproblems 

become small. Subproblem overlap is the main difference between “DC” and “DP.” 

 

Algorithm 1. Athena Routing Algorithm 

 

1 Function ARoute (src, dst, count) 

2 if src == dst then 

 

3 return NULL 

 

4 u = getLCL (src, dst) 

5 if u == 0 then 



International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 5, Issue 04, April-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406 
 

@IJAERD-2018, All rights Reserved  2140 

6 return P (src, dst) 

 

7 Set topLinkSet = getTopLinks (src, dst, u)  

8 Set result 

9 for each link L ∈ topLinkSet do 

 

10 leftPathSet = ARoute (src, L.left, count) 

11 rightP athSet = ARoute ( L.right, dst, count) 

 

12 result.add (leftPathSet + L + rightP athSet) 

13 SortByLength (result) 

 

14 result = result.sublist (0, count) 

15 return result 

 

Fig.1 Overlap path in path set. 

 

To achieve DP, there are two ways, which are: 1) top–down approach and 2) bottom–up approach. Only the neede 

subproblems are caluculated and solutions are maintained in the table so that when ever we try to solve the new problem we 

take the solutions, if it exists from the table to solve the problem .later we solve every low level subproblem use their 

solutions to obtain optimal solutions to the higher level subproblems. 

 

Taking advantage of optimal substructure and subproblem overlap, DP presents an optimal solution for the given problem 

with far less time. Some classical algorithm problems are solved by DP, including Fibonacci sequence, sequence alignment, 

tower of Hanoi puzzle, egg dropping puzzle, knapsack problem, and so forth. 

 

In all aforementioned recursively defined structures, a highlevel structure can be constructed by several low-level structures. 

Consequently, the path from a source to a destination can be divided into certain low-level paths. In addition, the shortest 

paths between two nodes are always existing, which means the requirement of optimal substructure is also met. Therefore, 

we can draw a conclusion that DP is able to applied to the routing computation process for data center networks. 

 

B. ARA 

ARA is based on DP to obtain simplicity and efficiency. We present how we recursively work out constant number of 

shortest paths in Algorithm 1. The function getLCL returns the lowest common level u of two nodes (Line 1). Then, the 

function getTopLinks (Line 1) figures out all level-u links starting from the whole level-u substructure which the source is 

located. Afterward, for each independent top link, we can recursively find a set of completed paths from the source server to 

the destination server. After each round of recursion completed, a sort function will be performed, so that we can limit the 

needed number of shortest paths. What noteworthy is the total independent paths might share same nodes, even though we 

choose absolutely different links in every round of recursion. This is because different high-level paths may share the same 

low-level paths. So when one path fails, we cannot assure that all the other paths are unaffected. This is a tradeoff to facilitate 

the routing algorithm and we can alleviate this problem by detecting multiple paths simultaneously. As Fig. 1 indicates, a set 

of paths connecting the same source and destination contain the same overlap path, which is already found out; thus repeated 

computation can be omitted. 

 

C. Path Probing of ARM 

The basic idea of ARM is figuring out all completed paths by ARA before sending probing packet (actually, we need not find 

all paths in practice; a threshold value can be utilized to limit the number of paths). If the source host src maintains a path 

cache to the destination host dst, this step can be omitted. Then, a set of probing packets will be dispatched to detect the 

capacities of selected paths. The intermediate servers record the link capacities in the probing packets and forward them to 

the destinations by the precalculated paths. After the probing packets arrive, the destination servers reply these probing 

requests by sending the probing packets back to the source hosts according to the original paths. Among all the valid paths, 



International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 5, Issue 04, April-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406 
 

@IJAERD-2018, All rights Reserved  2141 

we tend to choose the one with higher bandwidth and/or shorter length, so that we can get sufficient resources every time and 

utilize links evenly. 

 

Fig. 2. Dividing level-k problem into level-k − 1 problems in Totorok. 

D. Properties of ARA 
Our ARM is not constrained to some certain structure, but can be generalized to most server-centric recursive structures 

mentioned before. Take Totoro as an exemplification, our ARM performs well according to various experiments. Primarily, 

our routing algorithm works out all paths directly connecting two substructures, so no circuitous path is involved. With the 

feature of DP, we can ensure the shortest path length. In addition, our ARA takes consideration of all top-level switches 

connecting the substructures, which src and dst are located, respectively. Thus, we can get sufficient feasible paths by ARA 

to achieve a desirable fault-tolerant capacity. Moreover, the path probing policy of ARM is able to save a great number of 

bandwidth for Totoro, since the size of probing packet is far less than broadcast data packet among all servers. The 

intermediate servers are also released from heavy routing computation loads because they only carry on forwarding data 

packets. 

 

Theorem 1: k is the structural level. N represents the total number of servers in Totorok. Tk is denoted as the time 

complexity of calculating a level-k path. The time complexity of ARA is 

 

TK=O() ….(1) 

 

Proof: Suppose the source host and the destination host locate in different substructures, denoted as Totorok−1[src] and 

Totorok−1[dst], respectively. These two substructures are connected directly with level-k switches. Hence, shortest paths 

from Totorok−1[src] to Totorok−1[dst] must go through these switches directly without circuitously traversing other 

Totorok−1s. The number of level-k switches is (n/2)k, i.e., the number of level- k links is also (n/2)k. For each level-k link (m, 

n), suppose m and n are two end nodes of this link (see Fig. 2), ARA has to calculate two subpaths: one is from src to m and 

the other is from n to dst. Calculation of subpath can be conducted by following the similar steps recursively. Therefore, we 

can get Tk = 2× Tk−1 × (n/2)
k
. According to mathematical induction, we can finally figure out the following equation 

 

TK= …… (2) 

 

Omitting the denominator (since it is lager than 1), Theorem 1 is rigidly proved. Note that k is a small integer, a low-level 

Totoro (e.g., n = 32, k = 3) still can support more than one million servers (323+1 = 1 048 576). Thus the time complexity of 

ARA is relatively low when k is small. Similarly, we can also get the time complexity of ARA in DCell and Ficonn, 

respectively, in Theorems 2 and 3. 

 

Theorem 2: k is the structural level. N represents the total number of servers in DCellk. Tk is denoted as the time complexity 

of calculating a level-k path. The time complexity of ARA is 

 

Tk = O(Nlog
2
N). ……(3) 

 

Theorem 3: k is the structural level. N represents the total number of servers in Ficonnk. Tk is denoted as the time complexity 

of calculating a level-k path. The time complexity of 

ARA is 

 

Tk = O(Nlog
2
N). ….. (4) 

 

Comparing with shortest path algorithm (SPA) [based on Floyd–Warshall algorithm and the time complexity is O(N3)], our 

ARM is able to work out the shortest paths with more acceptable complexity. Hence, all above structures will get a huge 

promotion of average path length. In addition, according to the physical properties of the architecture, the paths between 

arbitrary pair of nodes can be totally figured out by the source server solely. Especially, for DCell, which adopts broadcasting 

link status among servers, our path probing mechanism will efficiently save network bandwidth as well as relieve 



International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 5, Issue 04, April-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406 
 

@IJAERD-2018, All rights Reserved  2142 

computation load for intermediate servers. All in all, our proposal can promote the whole efficiency and fault-tolerant 

capability for many structures. 

 

III. ATHENA PROTOCOL IMPLEMENTATION 
 

A. ARM Address 
Since most applications are based on TCP/IP, we then design ARM protocol as a 2.5-layer protocol. In adaptation of Totoro 

structure, we represent a specific server by a 32-bits tuple named ARM Address. Since it has the same length with IP address, 

we then utilize this tuple in place of IP address in the IP header, i.e., we set the IP address to the same value of ARM address. 

Thus, we can use the source and destination address from IP header directly, rather than adding two additional fields. 

 

There are three fields in and ARM address: Li, dir and vmid. Li denotes the server position in the network. In this paper, we 

suppose i is no more than three so that Li consists of tuples from L0 to L3 with 6-bits length each. Actually, i indicates the 

level of Totoro structure. Note that 

 

a 4-level Totoro structure (k = 3, n = 48) can support as many as five millions servers. We can simply complete the high-

order position or adjusting length of each Li field to apply to a smaller structure with less servers. The dir takes up 1 bit to 

indicate this port connects to an intra-switch or inter-switch. vmid means the index of virtual machine in a physical server. It 

occupies seven bits, so 

 

 
Fig.3. Header Format. 

 

Checksum 

 

Vector 

 

Source address 

 

Destination address 

 

Capacity 

 

 



International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 5, Issue 04, April-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406 
 

@IJAERD-2018, All rights Reserved  2143 

Fig. 4. Vector calculation. 

that we can support 127 virtual machines at most (vmid = 0, represents the physical server itself). We set this field only for 

adapting the trend of cloud computing, and it will not be used in the routing computing since only physical addresses are 

involved in our ARM and when data packet arrives at the target physical server, it will be transferred to the specific virtual 

machine by operation system. 

 

B. Packet Format 
There are two types of packet, which are: 1) path-probing packet and 2) data packet. Before dispatching a data packet, a set of 

path-probing packets will be delivered first to confirm the capacities of selected paths. It involves the source address and 

destination address, as well as the capacity of one path and so forth. However, the fields of source address, destination 

address and capacity are not required in data packets. Fig. 3 shows the format of packet header of these two types of packets. 

 

C. ARM Protocol 
As the fact that two adjacent servers in a path only differ at one “bit” (i.e., one item in Totoro tuple), we adopt the path 

transformation vector to preserve path information in Fig. 4. Vector is included in a data packet, and each item of this vector 

represents “one-bit” change. An intermediate server determines the next hop according to the value of item which current 

pointer is pointing at. This approach of preserving the path information in a vector has been adopted in former research [16]. 

If a server receives a packet from the upper layer, it first checks whether the destination address is a loop address or not. If so, 

then it returns the packet to the upper layer. Otherwise, the server checks if it maintains a cache of path information to the 

destination. If not, it then employs ARA to figure out a set of paths and update path cache. Then, the probing packet of 

request is constructed, in which the path transformation vector is also initialized. Afterward, the probing packet is dispatched, 

intermediate servers forward it to the next hop according to the vector. When it arrives at the destination host, the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fi g. 5. Totoro1 structure with n = 4. 

 

host will send back a reply message along the previous path. Then, a data packets will be dispatched to the destination along 

the selected path. 

 

IV. EXPERIMENTS AND RESULTS 

 

A. Totoro Structure 
In order to evaluate the performance of our ARM, we simulate it on the physical framework of Totoro and compare with the 

original Totoro fault-tolerant algorithm (TFR) and SPA (based on Floyd–Warshall [17]). TFR is the original TFR, which 

broadcasts link status in a domain and calculates the routing path hop-by-hop. This section briefly presents the physical 

structure of Totoro. Totoro structure consists of a series of commodity servers with dual ports and low-end commodity 

switches. The basic partition of Totoro is denoted as Totoro0, constructed by n servers connecting to an n-port switch. As 

mentioned before, Totoro is a server-centric structure with recursive definition. A Totoroi (i > 0) is constructed from n 

Totoroi−1s. Each round of construction consumes half of the total available ports, and the rest half are remained for 

expansion. As Fig. 5, a Totoro1 structure with N = 4, n = 4 is composed of 4 Totoro 0s. Each Totoro0 has four servers and an 

intra-switch with four ports. Four Totoro0s connect through two inter-switches. Unlike DCell and FiConn, there are duple 



International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 5, Issue 04, April-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406 
 

@IJAERD-2018, All rights Reserved  2144 

direct links between two equivalent substructures, thus the redundant links can be fully used for distributing data flows. 

Please refer to [11] for details. 

 

B. Evaluating Failure 
In Fig. 6, we evaluate the path failure ratio of Totoro using ARM under four types of failure, including link failure, server 

failure, switch failure, and rack failure. We run ARA, TFR, and SPA on a Totoro2 (n = 16, k = 2, tk 4096) under those four 

types of failures. Meanwhile, the results are compared with TFR and SPA. A rack consists of a whole Totoro0. Failures are 

generated randomly ranging from the ratio of 2% to 20%. Servers deliver packet to other nodes 20 times, Which means every 

final result is the average of 20 running results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Evaluating path failure ratios.             (a) Path versus server. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Path versus rack 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) Path versus switch. 



International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 5, Issue 04, April-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406 
 

@IJAERD-2018, All rights Reserved  2145 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(d) Path versus link. 

 

Before presenting our experiment results, we will introduce TFR and SPA briefly. By TFR, servers randomly choose a 

nearest level-u (u denotes the lowest common level with destination) link to the next hop, proceeding this process recursively 

until finding the destination. If failure occurs, another level-u or even higher links will be adopted. In addition, Totoro breaks 

the whole network into broadcast domains (TBD). In a TBD, link status are exchanged by broadcast among all servers. Thus 

the Dijkstra algorithm can be performed in a TBD to shorten path length. SPA is based on Floyd–Warshall algorithm, which 

requires global link states information to find out the shortest path. Consequently, SPA is globally optimal whereas the time 

complexity of it is as high as O(N3), where N denotes the total number of servers in a Totoro structure. 

 

As Fig. 6(a) and (b) indicates, the path failure ratios of the all three algorithms are equivalent under server and rack failure, 

respectively. That is, the fault-tolerant capacity of ARM is almost optimal. It also proves that ARM makes full use of 

redundant links and switches between two substructures. Rack failure means all servers in a rack are invalid, so it is 

analogous to server failure. In Fig. 6(c), under switch failure scenario, ARM performs much better than the original TFR. 

From Fig. 6(d), we can see when a high link failure occurs, ARM achieves slightly better fault-tolerant capacity than TFR. 

But compared with SPA, ARM is still a bit inferior. This makes sense since all top-level links calculated in Totoro are direct 

links between two substructures. On the contrary, SPA will traverse all feasible links in the whole structure until finding a 

valid path. Hence this is a tradeoff that ARM makes to facilitate algorithmic complexity and save computation resources. 

 

C. Evaluating Path Length 

The efficiency of routing algorithm can be directly evaluated by path length. A short average path length contributes to a 

short latency. Table I lists the values of average path length calculated by ARM, TFR and SPA, respectively, for a Totoro2 (n 

= 16, k = 2, N = 4096). We take SPA as the benchmark of routing performance because SPA is globally optimal. Comparing 

the results of ARM and SPA, it is easy to draw a conclusion that the differences are negligible. 

 



International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 5, Issue 04, April-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406 
 

@IJAERD-2018, All rights Reserved  2146 

Failure Ratio  0.04 0.0 0.12 0.16 0.20 

   8    

 TFR 8.44 8.4 8.52 8.57 8.63 

   8    

Server Failure ARM 7.34 7.4 7.48 7.56 7.64 

   1    

 SPA 7.34 7.4 7.48 7.56 7.64 

   1    

 TFR 8.98 9.6 10.64 11.97 13.69 

   8    

Link Failure ARM 7.47 7.6 7.90 8.16 8.47 

   8    

 SPA 7.47 7.6 7.94 8.22 8.54 

   9    

 TFR 8.43 8.4 8.50 8.53 8.58 

   6    

Switch Failure ARM 7.39 7.5 7.67 7.82 7.97 

   3    

 SPA 7.40 7.5 7.70 7.86 8.03 

   5    

 TFR 8.54 8.6 8.85 9.02 9.23 

   9    

Rack Failure ARM 7.33 7.4 7.48 7.57 7.66 

   0    

 SPA 7.33 7.4 7.48 7.55 7.65 

   0    

Table 1. Average Path Lengths In T16,2 

 

In some cases, such as server failure and rack failure, the average path lengths of both are equivalent. Whereas in link and 

switch failure, our ARM achieves shorter path lengths than SPA does, this is because the path failure ratio of ARM is a bit 

higher than that of SPA, thus our total path length is shorter. Besides, ARM is much simpler than SPA, for the latter’s 

computation complexity is as high as O(N3), and it requires frequent exchanges of link status, which may cause heavy loads 

for data center. In conclusion, the failure experiments prove the great fault-tolerant capacity as well as high efficiency of our 

ARM. 

 

Evaluating CPU Usage 

The CPU usage of committing routing algorithm in source server to evaluate the computing efficiency. The experiment 

environment is under a Lenovo T350 G7 server with quad-core processors and 8 GB memory. We simulate a Totoro2 (n = 

16, k = 2,N = 4096), and run ARM on the experimental server to work out 10 completed paths with any node in the same or 

neighbor 3 Totoro1 as the destination. Because of data locality, a server usually communicates with servers which are located 

in the same row or adjacent several rows. We set the initial nodes amount as 10 and increase by 10 per second until reaching 

the threshold value 500, and the total computing time is 3 min. As Fig. 7 indicates, the CPU usage continuously increases 

until achieving the peak value of 28% at around the 20th second. Afterward, it dramatically drops to 0% and remains to the 

end. Thus, we can get a conclusion that our ARM has great performance with rather low CPU usage. Besides, the dash line 

represents the number of nodes which the experimental 

 

Fig. 2. Dividing level-k problem into level-k − 1 problems in complete graph based structure. 

server calculates per second. From the graph, we can see the server figures out 10 paths of 500 nodes/s in the cost of 0% CPU 

usage, this is benefited from path cache constructed in the source server. Suppose a server maintains a cache of 10 completed 

paths to all of the rest nodes in the network. The maximal length of a path consists of five hops, and the vector of a path takes 

up 6 bits × 5 hops = 30 bits memory, e.g., is 4B approximately. Then, we can get the largest size of cache to preserve all path 

information on each host is 4B ×10 × 4096 ≈ 164 KB at most. This also further proves our ARM is resource saving. 

 



International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 5, Issue 04, April-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406 
 

@IJAERD-2018, All rights Reserved  2147 

V. CONCLUSION 
 

In this paper, we applied DP to routing mechanisms of novelly proposed server-centric data center structures. Since 

communication latency is significant for IoT, the conventional routing algorithms cannot assure to get the optimal solutions. 

This motivates us to propose a universally applicable routing mechanism named ARM comprising a routing algorithm called 

ARA and a path probing scheme. On basis of DP, ARA is able to find out the shortest paths with lower time complexity than 

SPA. ARM adopts source routing and path probing scheme, which means the source server performs computing a set of 

completed paths and dispatches probing packets to detect the connectivity and capacities of paths. ARM is implemented by a 

2.5-layer protocol and a 32-bits ARM address. In comparison with other conventional routing policies, our ARM simplifies 

the functionalities of intermediate servers as well as eliminates the extra bandwidth consumption caused by broadcasting link 

states among servers. Besides, our failure experiments on Totoro structure prove the satisfactory fault tolerant capacity of 

ARM comparing with TFR and SPA under different types of failures. We also demonstrate the relatively low CPU usage 

ratio of source server during the path computing process. Therefore, our ARM is a reliable and efficient mechanism which 

can be generalized to most server-centric structures to promote the overall performance of data center network. In the future 

work, we will focus on the implementation of ARM in DCell, FiConn, and other structures to further verify the performance 

of our ARM. 

 

REFERENCES 

 

[1] A special – purpose peer to peer file sharing system for mobile adhoc networks. A . Klemm; C.Lindemann; o.p. 

Waldhorst. 

 

[2] S.cesar San Martin , F. Torres, R.Barrientos, & M,Sandoval, “ Monitoneo Y control de temperetura de un estanque da 

agwa entre chile Y Espana usando redes de alta velocidad, “ Revista FACULTAD DE INGENIERIA, VTA (CHILE), 

vol. 11,no .1, pp. 41 – 46, 2003. 

 

[3] L . Hov and N. Bergmann, “ Novel Industrial Wireless sensor networks for machine condition monitoring and fault 

diagnosis ,” Instrumentation & measurement, IEEE Transactions on,Vol.61;no.10, pp. 2782 – 2798 , 2012. 

 

[4] Z.Ke, L .Yang, X.Wang-hui , and S.HEEJONG, “ The application of a wireless sensor network design based on Zigbee is 

petro chemical industry field ,“ in intelligent Networks and intelligent systems 2008 , pp . 284 – 287. 

 

[5] G.Cena, A . Valenzano, and S . Vitluri , “ Wireless exetensions of wired industrial communications networks, “ in 

Industrial informaties , 2007 5th IEEE International conference on vol . 1 , 2007, pp . 273 – 278. 

 

[6] K  .Koumpis,  L.Hanna,  M.  Andersson  ,  and  M. Johansson, “ Wireless Industrial control and monitoring beyond cable 

replacement “, in proc . 2nd PROFIBUS int . conf ,combe Abbey, Warwickshine, UK, 2005. 

 

[7] S.Trikaliotis & A . Gnad, “ mapping wireless into profinet & profibus fieldbusses “ , in emuging Technologies Factory 

Automation , 2009. ETFA A 2009. IEEE conference on 2009, pp. 1-4. 

 

[8] Siemens, “ profinet the industrial Ethernet standard for automation 8th IEEE international workshop on Factory 

communication systems COMMUNICATIONS IN AUTOMATION , 2007. 

 

[9] D . Miorandi, E . Uhlemann S . Vitluri , and A . Willig, “ Guest editional : special section on wireless technologies in 

factory & industrial automation , part i , “ Industrial Informaties , IEEE Transactions on , vol. 3 , no. 2, pp . 95-98, 

2007. 

 

[10] C . Goo et al. , “ Dcell : A scalable and fault tolerant network structure for data centers “, in proc . ACM SIGCOMM, 

2008 , vol . 38, no. 4, pp. 75 – 86. 

 

[11] D . Li et al . , “ Ficonn; using backup port for server interconnection in data centers , “ in proc. IEEE INFOCOM , 2009 

, PP . 2276 – 2285. 

 

[12] J . Xie , Y . Deng , and K . Zhou, “ Totoro : A suxlable and fault tolerant data center network by using backup port “, 

in proc , Netw, parallel comput. , 2013, pp . 94 – 105. 

 



International Journal of Advance Engineering and Research Development (IJAERD) 

Volume 5, Issue 04, April-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406 
 

@IJAERD-2018, All rights Reserved  2148 

[13] P. F. Felzenszwalb and R. Zabih, “Dynamic programming and graph algorithms in computer vision,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 33, no. 4, pp. 721–740, Feb. 2011. 

 

[14] S. Tang et al., “Easypdp: An efficient parallel dynamic programming runtime system for computational biology,” IEEE 

Trans. Parallel Distrib Syst., vol. 23, no. 5, pp. 862– 872, Apr. 2012. 

 

[15] J. Li, G. Tan, and M. Chen, “Automatically tuned dynamic programming with an algorithm-by-blocks,” in Proc. IEEE 

16th Int. Conf. Parallel Distrib. Syst. (ICPADS), 2010, pp. 452–459. 

 

[16] G. F. Riley, M. H. Ammar, and E. W. Zegura, “Efficient routing using nix-vectors,” in Proc. IEEE Workshop High 

Perform. Switching Routing, 2001, pp. 390–395. 

 

[17] R.W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, vol. 5, no. 6, p. 345, 1962. 


