
 International Journal of Advance Engineering and Research

Development

Volume 5, Issue 03, March -2018

@IJAERD-2018, All rights Reserved 1502

Scientific Journal of Impact Factor (SJIF): 5.71
e-ISSN (O): 2348-4470

p-ISSN (P): 2348-6406

Securing SDN infrastructure of IOT Fog computing network:

A survey on Mitm attacks

Shreevidya S1, Dr.Shambavi B R2

1
PG Student, Department of Information Science and Engineering, BMSCE

2
Associate Professor, Department of Information Science and Engineering, BMSCE

Abstract—In this paper, we discussed the brief overview of SDN security survey,we specifically investigate the potential

threats of man-in-the-middle attacks on the Open Flow control channel, we also describe a feasible attack model in the

openflowchannel, and then we implement attack demonstrations to show the severe consequences of such attacks.

Additionally, we propose a lightweight countermeasure using Bloom filters. We implement a prototype for this method to

monitor stealthy packet modifications. The result of our evaluation shows that our Bloom filter monitoring system is efficient

and consumes few resources.

Keywords—MITM (Man-In-The-Middle) attacks, IOT (Internet of Things), SDN (Software Defined Networks), Fog

computing networks.

1. INTRODUCTION

Software-defined networking (SDN), which brings many new features, such as network programmability, centralized control,

etc., enablesowners to automatically manage the entire network in a flexibleand dynamic way. With these benefits, many

believe that the future of the IoT will be based on SDN. Therefore, severalworks [2] and [3] are proposed for the future

IoT.As both SDN switches and fog nodes are relativelypowerful nodes in a typical IoT deployment, they areusually

combined together, which is a perfect way to integratethe functionality of SDN. Though deploying IoT–Fog networks using

SDN seemspromising, security issues are inevitable here. As fog nodes and SDNswitches are usually combined together,

vulnerabilities in fognodes may be leveraged by attackers to compromise the SDNswitches they control. Therefore, it is

necessary to have securitymechanisms to further monitor and enhance the securityof the SDN infrastructure in IoT–Fog

scenarios.

In SDN, the controller controls all the switches through“OpenFlow” channels. Commands, and requests from the

controller,as well as status and statistics from the switches, aretransmitted through the OpenFlow channels. Therefore,

thesecurity and reliability of OpenFlow channels between thecontroller and switches are critical for proper SDN

operation,configuration, and management. If an attacker were tointercept and/or modify the messages on these channels, he

or she could send fake messages to the switches and thecontrollers, launching a wide variety of attacks, such as denialof

service or man-in-the-middle (MitM) attacks. Open Flow channels, once intercepted, may bring disastrouscircumstances to

both the network providers and theircustomers. For example, an attacker can collect customers’sensitive information (e.g.,

sensor data depicting a user’s daily behaviour) by commanding the switches to send copies of packetscontaining such

information to the attacker. In this way,sensitive user information will be disclosed to attackers. Withnetwork infrastructure

under such a threat, SDN has moresecurity concerns than a traditional network. Taking anotherexample, the attacker can send

fake packets, on behalf of theswitches, to the controller, poisoning the controller’s globalview of the network topology. With

the incorrect topology,the controller may misconfigure other well-behaved switches,which may cause the network

connectivity outages. The resultis a horrible user experience and substantial revenue lost. Withsuch potential threats still

viable, SDNs will never fully replacetraditional networks. Even though it offers many new attractivefeatures, without solving

these problems, all the flexibilityis meaningless. Therefore, work should be done to protect theOpenFlow channels from

interception.One may leverage cipher techniques to encrypt the channelafter authentication. However, authentication and

encryptionalone cannot guarantee the safety of the OpenFlow channels.TLS, for example, is one of the most popular

cryptographicprotocols. However, there are still works exploiting vulnerabilitiesin its cipher suites and the protocol itself [4].

In [5], theattacker can compromise a TLS link by stealthily installing aclient certificate. Moreover, since smart embedded

devices inIoT have limited resources, some safe but computing intensiveprotocols cannot be deployed on them. Without

securecommunicating, these devices are more vulnerable to be compromised,increasing the risks of attacks against

OpenFlowchannel. Even assuming it were perfectly safe, fully implementingTLS is very difficult. Reference [6] indicates

thatmost SSL implementations are partially implemented and containpotential vulnerabilities. Furthermore, if the attacker

were to obtain the credentials or passwords of the switches or controllersvia some other ways, there are limited approaches to

detect and defend against the attacks. In general, we cannot only rely on cipher techniques. There should be other

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 5, Issue 03, March-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2018, All rights Reserved 1503

complimentarysystems to secure OpenFlow channels. To detect suchattacks, it may be possible to use a packet monitor to

investigatethose packets in the OpenFlow channels. However, theattacker does not necessarily change all the packets

passingthrough the channels. With only one or two packets insertedor dropped, the attacker can easily change a switch’s

behaviour. Therefore, monitoring the channel is not efficient. Besides,developing another monitoring system could cost much

timeand money.In this paper, we mainly focus on the security issues ofOpenFlow channels, especially MitM attacks. We

propose approaches to launching MitM attacks on OpenFlow channels and investigate several subsequent attacks. We

implementdemos for different MitM attacks. We show that an attacker can use asmall script to modify flow tables, collect

information, andpoison the controller’s view. We also propose a countermeasureto detect MitM attacks by leveraging Bloom

filter. Weextend the OpenFlow protocol to incorporate our Bloom filtermethod and implement a prototype system which can

serveas a complementary system to a variety of cipher techniques,such as TLS, to protect the OpenFlow channel from

MitMattacks. Compared with standard packet monitoring systemsand TLS, our system is lightweight and does not require

additionalhardware or maintenance. The results of our evaluationshow that our system is efficient, accurate, and incurs only

negligentoverhead. To the best of our knowledge, this paper isthe first to fully investigate MitM attacks on OpenFlow

channelsand develop a monitoring system based on SDN for suchattacks.

In summary, our contributions are as follows.

1) We build demonstrations of these attacks to show howthe attackers modify flow paths, collect sensitive information,and

poison the controller’s global view. Ourimplementations are relatively simple scripts with a fewlines.

2) Based on SDN features, we propose a lightweight countermeasureto detect MitM attacks against OpenFlowchannel.

3) We implement a prototype system to detect packet modificationwith Bloom filters based on SDN and extending

theOpenFlow protocol.

2 OVERVIEW OF SDN SECURITY

There are clear security advantages to be gained from the SDN architecture. For example, information generated from traffic

analysis or anomaly-detection in the network can be regularly transferred to the central controller. The central controller can

take advantage of the complete network view supported by SDN to analyze and correlate this feedback from the network.

Based on this, new security policies to prevent an attack can be propagated across the network. It is expected that the

increased performance and programmability of SDN along with the network view can speed up the control and containment

of network security threats.

On the down-side, the SDN platform can bring with it a host of additional security challenges. These include an increased

potential for Denial-of-Service (DoS) attacks due to the centralized controller and flow-table limitation in network devices,

the issue of trust between network elements due to the open programmability of the network, and the lack of best practices

specific to SDN functions and components. For example, how to secure the communication channel between the network

element and the controller when operated in the same trust domain, across multiple domains, or when the controller

component is deployed in the cloud?

In the past few years, a number of industry working groups have been launched to discuss the security challenges and

solutions. Meanwhile, researchers have presented solutions to some SDN security challenges. These range from controller

replication schemes through policy conflict resolution to authentication mechanisms. However, when the extent of the issues

is compared to the degree of attention placed on them, it is clear that without a significant increase in focus on security, it is

possible that SDN will not succeed beyond the private datacenter or single organization deployments seen today. The main

objective of this paper is to survey the literature related to security in SDN to provide a comprehensive reference of the

attacks to which a software-defined network is vulnerable, the means by which network security can be enhanced using SDN

and the research and industry approaches to security issues in SDN. The paper is structured as follows: Section II provides a

context to the work by introducing the characteristics of SDN. In Section III recent SDN and OpenFlowsecurity analyses are

presented followed by a categorization of the potential attacks to which the architecture is vulnerable. Research work

presenting solutions to these attack types is then presented in Section IV. The arrows in Fig. 1 indicate the attack categories

for which solutions have been proposed and, by extension, those areas which have not yet received research attention. In

Section V, the alternative view of SDN security is introduced with a survey of the research work dealing with security

enhancements based on the SDN architecture. In Section VI, the two perspectives on SDN security are compared with

improved functionality, open challenges, and recommended best practices identified. Section VII highlights open standards

and open source industry group work on SDN security. Future research directions are identified in Section VIII. The paper is

concluded in Section IX. For clarity, an overview of the Security Survey structure is presented in Fig. 1.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 5, Issue 03, March-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2018, All rights Reserved 1504

Fig 1: overview of SDN Security

Fig 2: Attacking model.

Fig 3: Traffic redirection attack.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 5, Issue 03, March-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2018, All rights Reserved 1505

Time Source Destination Protocol Info

1.001096000 10.0.0.1 10.0.0.4 ICMP Echo (ping) requestid=0x08fc,

seq=2/512

1.001121000 10.0.0.3 10.0.0.3 ICMP Echo (ping) request id=0x08fc,

seq=2/512

1.001447000 10.0.0.3 10.0.0.1 ICMP Echo (ping) reply id=0x08fc,

seq=2/512

1.001457000 10.0.0.4 10.0.0.1 ICMP Echo (ping) reply id=0x08fc,

seq=2/512

Fig 4:Redirection attack. Packet capture result of h1 ping h4.

3. ATTACK DEMONSTRATION

Here, we introduce three attack demonstrations. In the first, the attacker redirects flows in the data plane. The second

exemplifies how the attacker can collect information from the data plane. The last, shows how the attacker is able to poison

the controller’s view of the network. We describe only three attack scenarios out of many scenarios. The complete spectrum

of possible attacks is currently unknown.

A. Environment Set-Up

We use Floodlight, an open source SDN controller, as ourSDN controller, and use Mininet to simulate a network in our

experiments. The controller and switches communicate through OpenFlow v1.3. To simplify our demos, we assume that the

attacker, the controller, and the Mininet VM are located on the same local network. This assumption does not affect the result

of our demos because the attacker can always intercept OpenFlow channels with spoofing techniques, such as ARP spoofing.

This is possible as long as the attacker exists in the path between the switch and the controller. Since Mininet is running on a

virtual machine, all simulated switches share the same IP address and remotely connect to the controller. Our attack scripts

attack only the Mininetvirtual machine, intercepting all simulated switches. Our configurationdoes not affect the final result

of the demos becausethe technique to attack the switch’s interface is identical to attacking the Mininet virtual machine.Our

attack scripts are written in Python v2.7 using the popular scapy library, which is very convenient for crafting, sending, and

sniffing packets. We use this library to build fake OpenFlow commands for the switches. In our demos, we use ARP spoofing

techniques to intercept the OpenFlow channel.

B. Traffic Flow Modification

The most straightforward attack is to stealthily modifythe victim switch’s forwarding table. In our experiment, the attacker

blocks a certain host’s traffic flow and redirects the flow to another host. Fig. 2 shows the idea of this attack. The attacker

inserts two OpenFlow packets, which contain flow table modification commands, into the OpenFlow channel. The first

OpenFlow packet instructs the switch s1 to modify the destination IP and MAC address of any packets originally destined for

host h4. The new IP address and MAC address are that of host h3. The second OpenFlow packet commands the switch to

modify the source IP address of any packets originating from h3, to the IP address of h4. As a result, if h1 tries to

communicate with h4, it will actually be redirected to h3, leaving h1 unaware that it is communicating with a different host.

To test the attack, we let h1 ping h4 and capture the packets transmitted using Wireshark. Fig. 3 shows the packet capture

results (from all the interfaces in s1). In the figure, the first entry shows that s1 receives the ICMP packet from h1 (10.0.0.1)

with the destination h4 (10.0.0.4). After being processed by the switch, the packet’s destination IP address has been changed

to h3’s (10.0.0.3) (the second entry). Though not shown in Fig. 3, from the reply of h3 (the third entry), the MAC address of

the packet is also changed. Passing through s1 again, the source IP address is changed back to the IP address of h4 (the fourth

entry). These redirected paths cannot be inferred by h1. If h1 is a Web camera that tries to communicate with a cloud server

h4 but unexpectedly communicates with a malicious machine h3, all sensitive information from h1 will be exposed to the

attacker.

C. Information Collection

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 5, Issue 03, March-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2018, All rights Reserved 1506

The attacker may also stealthily collect information by modifying the switch forwarding table. Fig. 4 illustrates the basic idea

of an information collection attack. The attacker first forges an OpenFlow packet, which contains flow table modification

commands, and sends it to the victim switch. The attacker instructs the switch to send a copy of each packet targeting h4 to

the “controller,” which is actually the attacker. Once the victim switch updates its forwarding table, the attacker will receive

all the packets originally destined for h4. We let h1 ping h4 and again capture all packets from all the interfaces of s1 using

Wireshark. Fig. 5 shows the capture result. In this demonstration, we let the attacker simply sends back the ping packet just

for testing. Fig. 6 shows the ending point of h1’s ping packets. We can see that the host receives two duplicate replies, one

from h4 and the other from the attacker. Similar as the previous demonstration, sensitive information will be leaked to the

attacker, but both the client and the server will not be aware of the eavesdropper.

D. Topology Poisoning Attack

In SDNs, the controller learns the global topology through LLDP packets. Suppose the controller commands switch s to

output an LLDP packet through port eth1. Another switch s’ receives this packet on port eth2. Switch s’ includes both this

packet and the port eth2 number in a packet_in message and sends it to the controller. From this message, the controller

knows that port eth1 in s connects with port eth2 in s’. If the attacker modifies the LLDP packets, the controller will have an

incorrect view of the global topology. Fig. 7 shows the basic idea of this attack. The attacker stealthily modifies both the

output port and the max_lenfield in the packet_out message. The max_lenfield indicates the maximum number of bytes the

switch can send to the controller. If this field is set to 0, and the output port is set to the controller, s1 simply ignores this

message. In this way, s2 has no chance to receive the LLDP packet, let alone forward the packet back to the controller. If the

attacker does the same to s2, the controller will conclude that these two switches are not connected. Fig. 8 shows the topology

generated by the controller during the attack. Fig. 8 shows the DPID of each switch. The DPID of s1 is

“00:00:00:00:00:00:00:01” while the DPID of s2 is “00:00:00:00:00:00:00:02.” The third switch, which is not shown in Fig.

7, is not involved in this attack. In reality, s1 and s2 are connected. However, the controller is fooled into thinking that they

are not. If there is a packet inspection middle box along the s1–s2 link, the attacker can use this method to circumvent

inspection.

Fig: 5 Information collection attack.

Time Source Destination Protocol Length Info

19.270245000 10.0.0.1 10.0.0.4 OF 1.3 206 Of_packet_in

19.274617000 10.0.0.1 10.0.0.4 OF 1.3 204 Of_packet_out

20.271880000 10.0.0.1 10.0.0.4 OF 1.3 206 Of_packet_in

20.277751000 10.0.0.1 10.0.0.4 OF 1.3 204 Of_packet_out

Fig: 6 Information collection attack. Packet capture of h1 ping h4

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 5, Issue 03, March-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2018, All rights Reserved 1507

Fig: 7 Information collection attack: h1 ping h4 in terminal.

Fig: 8 Topology poisoning attack.

Fig: 9 Topology poisoning attack, Controller view.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 5, Issue 03, March-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2018, All rights Reserved 1508

4. COUNTERMEASURE

In this section, a countermeasure and its OpenFlow extension to detect MitM attacks on OpenFlow channel will be proposed.

As mentioned in the previous section, the attacker can stealthily modify packets in the data plane by changing one or more

switches’ forwarding table. To detect such a threat, one straightforward idea is to let the controller query all the packets that

the switches forwarded, and then compare them one by one. However, this naive method will dramatically increase the

burden of both the controller and the network, and also it is not efficient. To ease the burden, we propose a method to detect

packet modifications using a Bloom filter. Bloom filter is a space-efficient data structure, which is used for testing the

existence of an element in a set.

We let each switch along one flow locally put packets of that flow into a Bloom filter. If they put the same packets into the

Bloom filter, respectively, these Bloom filters should be the same. Thus, the controller can detect any packet modifications of

this flow by collecting all these Bloom filters and checking the difference between these filters. If there are any differences

between these filters, it is sure that the packets are modified during its delivering. Besides all the switches’ Bloom filter, we

also need the origin packet sending from the sensor in case the data packets are modified at the first switch. We put a monitor

process in the fog node. These processes do the same as what the switches do, putting packets from a specific flow into

Bloom filters and sending Bloom filters to the controller when requested. The only difference is that these monitor processes

interact with another instance in the cloud rather than the controller. Then the instance forwards the Bloom filter to the

controller. The reason of using another instance is to hide the interaction between the monitor process and the controller. As

fog nodes frequently communicate with the cloud and these monitor only interact with the cloud when requested, the attacker

has difficulties finding these monitor processes. To apply this idea, we extend OpenFlow by adding three new message types:

1) BF_INITIAL; 2) BF_SUBMIT; and 3) BF_REPLY. The meanings of these messages are introduced later. Figs. 9 and 10

illustrate the protocol of initializing and finalizing our Bloom filter method, respectively. To start detection, the controller

first sends all switches an initializationcommand (BF_INITIAL), which contains the following information: 1) the examined

flow f , represented by matchingfields used in OpenFlow; 2) a tag τ , which will be usedlater; 3) a set S of fields that should

be omitted when computing the hash values of packets (necessary for inserting into a Bloom filter); and 4) the maximum

number of packets inserted into the filter n. If n is set to 0, there is no limit for inserting packets into the Bloom filter. After

receiving BF_INITIAL, each switch initializes itself according to the parameters and replies with an acknowledgment

(BF_REPLYwith no content) to the controller. When the controller receivesa reply from every switch, it triggers the

detection stage by modifying the flow table of the first switch to tag flowf with τ. Once the controller wants to collect the

Bloom filters from the switches, it first modifies the flow entry of the tagged flow f in the last switch on the path by adding a

packet_inaction. In this way, the controller can track the last packet of the procedure. After that, the controller commands the

first switch to stop tagging flow f. When there is no packet from the last switch for a certain time, it sends out

BF_SUBMITmessages to all the switches to submit their Bloom filters byBF_REPLY messages. The controller compares all

the filters to find whether there is any difference among them.If any difference is found, the controller will warn the

administrator about the misbehaving switches.

Fig: 10 Initialization of generating Bloom filter.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 5, Issue 03, March-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2018, All rights Reserved 1509

Fig: 11 End of generating Bloom filter

Fig: 12 Architecture of Bloom filter monitor system

A. Limitation of the Countermeasure

This approach works in most cases in practice. However, in some extreme cases, for instance, all the OpenFlow channels

between the controller and switches in one flow path has been intercepted, our method will not work. Besides, if the attacker

modifies fields that are not in set S, this paper will not work either.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 5, Issue 03, March-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2018, All rights Reserved 1510

5. IMPLEMENTATION

In this section, we will elaborate on the implementation of our Bloom filter monitor system, which can detect packet

modifications in SDNs. Specifically; we will present the overview of the system and describe all components of the system.

A. System Overview

The monitor system, which we refer to as the “Bloom filter monitor system,” consists of two parts. One is implemented in

Floodlight controller, and the other is implemented in Open vSwitch (OVS). Fig. 11 shows the architecture of our system.

The controller side has one module named “Bloom filter monitor,” which is responsible for sending out BF_INITIAL and

BF_SUBMIT messages to OVS, collecting replies from OVS, and comparing the switches’ filters. This module offers two

REST APIs for administrators or other applications to conduct the Bloom filter detection phase. The switch portion consists

of two components. Generally speaking, the switch has two tasks for each packet: 1) extract examined fields (or data) and 2)

insert extracted contents into the Bloom filter. In OVS, all the packets are received and forwarded in the datapath, a module

that is running in kernel space where extraction starts. However, any delay inside the datapath can affect the forwarding

speed. Thus, we put the hash function and Bloom filter insertion code into the user space. In this way, the switch can insert

the extracted content while forwarding packets in the datapath. The switch also has one component to communicate with the

controller, receiving OpenFlow messages from the controller, triggering the Bloom filter detection phase, and replying with

the filled Bloom filter to the controller.

B. Controller Side Design

1) Bloom Filter Monitor Module: The main part of the Bloom filter monitor, as we mentioned previously, is a module in the

Floodlight controller, which is automatically loaded during the initialization of Floodlight. The module has two main

functions: 1) initializing and 2) finalizing the Bloom filte monitor method. Both of these functions can be invoked from

REST APIs. The workflow of these two functions is the same as shown in Figs. 9 and 10.

2) OpenFlow Library: To extend OpenFlow to support our new message type, we modify the source code of the OpenFlow

protocol library in Floodlight. For each of our three new OpenFlow messages: 1) BF_INITIAL; 2) BF_SUBMIT; and 3)

BF_REPLY; one interface and several implementation classes (implemented under different OpenFlow versions) are inserted

into the source code. We also change the serialization and OFTypeenum to support the serialization of these messages so that

they can be transmitted through the network.

3) Floodlight Core: To enable Floodlight to handle our new messages as just another standard OpenFlow message, we

modify some core codes of Floodlight. Class OFSwitchHandshakeHandleris responsible for receiving different types of

messages and dispatching them to different components. We inserted code here to let it dispatch BF_REPLY messages to a

message listener. In this way, the Bloom filter monitor is able to receive and parse BF_REPLY messages from switches

through a message listener.

C. Switch Side Design

1) OpenFlow Extension: To extend OpenFlow in OVS, wefirst insert the head structure of our three new OpenFlowmessages,

in the OpenFlow head files, into OVS. Then, weadd new entries in enumOPTRAW and OFTYPE for our new message type.

We also implement a message builder for BF_REPLY and parsers for BF_INITIAL and BF_SUBMIT, so that the OVS can

understand these new messages. Finally, we add our new message handlers to the OpenFlow handler in OVS. The handler

parses the message with the parser and proceedsaccording to the message contents. Several actions may be taken, such as

configuring the datapath through netlink, modifying the flow table to tag flows, and replying to the filters generated. With

these modifications, OVS is able tocommunicate with Floodlight, which also has the OpenFlowextension.

2) Fields Extraction and Element Insertion: OVS is mainlydivided into two parts: 1) vswitchd and 2) datapath. Vswitchdruns

in the user space and is responsible for communicating with the controller and managing the flow table along with some other

features. Datapath runs in kernel space and is responsible for forwarding packets. As this part runs in kernel space, the

packets can be quickly forwarded.

All the packets received by OVS first come to the datapathcomponent where feature extraction is implemented. Once

theswitch receives one tagged packet, it extracts fields accordingto the configuration from vswitchd. After extraction, it sends

the result to vswitchd using upcall, which is a mechanism used for datapath to send messages to vswitchd. In our

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 5, Issue 03, March-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2018, All rights Reserved 1511

implementation,we leverage this to send the extracted header fields to userspace. Once user space receives the extracted field

information, it computes the hashes and inserts them into the Bloom filter.

3) Filter Placement and Initialization: It is nontrivial todecide where to place the Bloom filter. Usually, there are several

bridges inside one OVS entity. Each bridge may be connected to several different VMs. If we put the filter in the global

domain, (i.e., all bridges share one filter), then the traffic flowing between VMs will not be covered. Therefore, each bridge

should be treated as a switch entity and given their ownBloom filter. In our implementation, we put the Bloom filter inside

thestructure ofproto, which is for OpenFlow protocol in OVS, since each bridge has only one such data structure, and this

structure can be accessed during the processing of the upcall, where messages of extracted contents are received. When a

bridge connects with the controller, it will initialize its ownofprotostructure. The filter spaces are allocated at the sametime.

Once the filter has been submitted to the controller, thebridge will reset the filter for the next collection.

4) Hash Function: The hash algorithm is implemented withMurmur3 32-bit [12]. It is independent and uniformly

distributed,which is apt for use in a Bloom filter. Furthermore,it is simple and efficient. For each packet, we compute the

Murmur3 hashes with different seeds (to generate the k necessary hashes used in the Bloom filter) and the hash output is

truncated according to the filter size. The decision of k will be discussed in the next section.

8. CONCLUSION

In this survey, the evidence for the two sides of the SDN security coin has been presented; that it is possible to improve

network security using the characteristics of the SDN architecture,and that the SDN architecture introduces security

issues.The conclusion is that the work on enhancements to network security via SDN is more mature. This is evidenced by

the commercially available applications. However, research solutions have been presented to address some of the security

issues introduced by SDN e.g., how to limit the potential damage from a malicious/compromised application. Work on these

issues is developing encouraged by the increasing security focus of industry-sponsored standardization and research groups.

We focus on the potential threat of MitM attacks targeting on OpenFlow channels in IoT–Fog scenario. We introduce an

attack model to show how to perform such attack on our proposed SDN architecture. We also implement three attack demos

to reveal how the attack works in detail. To detect such attacks, we also propose a countermeasure using Bloom filter to

detect MitM attack. A prototype of this Bloom filter monitor is implemented by extending the OpenFlowprotocol. The

evaluation result shows that the Bloom filter method is both lightweight and efficient.

REFERENCES

[1] 11th Annual Visual Networking Index: Global IP Traffic Forecast Update, Cisco, San Jose, CA, USA, 2015.

[2] A. Wang, Y. Guo, F. Hao, T. V. Lakshman, and S. Chen, “Scotch: Elastically scaling up SDN control-plane using

vSwitch based overlay,”in Proc. 10th ACM Int. Conf. Emerg. Netw. Exp. Technol., Sydney, NSW, Australia, 2014, pp.

403–414.

[3] D. Wu, D. I. Arkhipov, E. Asmare, Z. Qin, and J. A. McCann, “Ubiflow: Mobility management in urban-scale software

defined IoT,” in Proc.IEEE INFOCOM, Hong Kong, 2015, pp. 208–216.

[4] Y. Sheffer, R. Holz, and P. Saint-Andre, “Summarizing known attacks on transport layer security (TLS) and datagram

TLS (DTLS),” IETF, Fremont, CA, USA, RFC 7457, 2015.

[5] C. Hlauschek, M. Gruber, F. Fankhauser, and C. Schanes, “Prying open Pandora’s box: KCI attacks against TLS,” in

Proc. 9th USENIX WOOT, Washington, DC, USA, 2015, p. 2.

[6] SSL Labs. Survey of the SSL Implementation of the Most Popular Web Sites.Accessed on Apr. 2016.[Online]. Available:

https://www.trustworthyinternet.org/ssl-pulse/

[7] A. Cui, M. Costello, and S. J. Stolfo, “When firmware modifications attack: A case study of embedded exploitation,” in

Proc. NDSS, San Diego, CA, USA, 2013.

[8] K. Chen, “Reversing and exploiting an apple firmware update,” in Proc. Black Hat, Las Vegas, NV, USA, 2009.

[9] S. Hanna et al., “Take two software updates and see me in the morning: The case for software security evaluations of

medical devices,” in Proc. HealthSec, San Francisco, CA, USA, 2011, p. 6.

[10] C. Miller, “Battery firmware hacking,” in Proc. Black Hat USA, Las Vegas, NV, USA, 2011, pp. 3–4.

[11] B. Jack, “Jackpotting automated teller machines redux,” in Proc. Black Hat USA, Las Vegas, NV, USA, 2010.

[12] Austin Appleby. Accessed on Apr. 2016.[Online]. Available: https://sites.google.com/site/murmurhash/

[13] S. Scott-Hayward, S. Natarajan, and S. Sezzer, “A survey of security in software defined networks,” IEEE Commun.

Surveys Tuts., vol. 18, no. 1, pp. 623–654, 1st Quart., 2016.

[14] S. Shin et al., “Fresco: Modular composable security services for software-defined networks,” in Proc. NDSS, San

Diego, CA, USA, 2013.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 5, Issue 03, March-2018, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2018, All rights Reserved 1512

[15] P. Porras, S. Cheung, M. Fong, K. Skinner, and V. Yegneswaran, “Securing the software-defined network control layer,”

in Proc. NDSS, San Diego, CA, USA, 2015.

[16] S. Matsumoto, S. Hitz, and A. Perrig, “Fleet: Defending SDNs from malicious administrators,” in Proc. ACM Workshop

Hot Topics Softw. Defined Netw., Chicago, IL, USA, 2014, pp. 103–108.

[17] S. Son, S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Model checking invariant security properties in OpenFlow,” in

Proc. IEEE ICC, Budapest, Hungary, 2013, pp. 1974–1979.

[18] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility in software-defined networks: New attacks and

countermeasures,” in Proc.NDSS, San Diego, CA, USA, 2015.

[19] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “SPHINX: Detecting security attacks in software-defined networks,”

in Proc. NDSS, San Diego, CA, USA, 2015.

[20] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts, applications and issues,” in Proc. ACM Workshop

Mobile Big Data, Hangzhou, China, 2015, pp. 37–42.

[21] S. Yi, Z. Qin, and Q. Li, “Security and privacy issues of fog computing: A survey,” in Proc. WASA, Qufu, China, 2015,

pp. 685–695.

[22] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and applications,” in Proc. IEEE HotWeb, Washington, DC,

USA, 2015, pp. 73–78.

[23] Z. Hao and Q. Li, “EdgeStore: Integrating edge computing into cloudbased storage systems,” in Proc. IEEE/ACM Symp.

Edge Comput., Washington, DC, USA, 2016, pp. 115–116.

[24] Z. Hao, E. Novak, S. Yi, and Q. Li, “Challenges and software architecture for fog computing,” IEEE Internet Comput.,

vol. 21, no. 2, pp. 44–53, Mar./Apr. 2017.

