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Abstract: The purpose of this article is to extend numerousaspectsof one-parameter fractional Brownian motion to set-

indexed fractional Brownian motion. Most of the proofs are performed by “characterization of set-indexed fractional 

Brownian motion by flows". The characterization was proven by Herbin E. and Merzbach E. (see [HeMe3]), which 

saysthat a set-indexed process is a set-indexed fractional Brownian motion if and only if its projections on all the 

increasing paths are one-parameter time changed fractional Brownianmotions. 
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Introduction 

 

 In this study, we extend the selected aspects of classical fractional Brownian motion to fractional Brownian 

motion, when the set index A is a compact set collection on a topologicalspace ( , )T  . This fractional Brownian motion 

is called set-indexed fractional Brownian motion. The frame of a set-indexed fractional Brownian motion is not only a 

new step towards generalization of a classical fractional Brownian motion, but it provides a real tool in modeling. 

 Fractional Brownian motion finds applications in diverse fields such as finance, economics, biology, 

telecommunications, hydrology, physics and engineering. Whenever we are interested in processes with self-similarity, 

long memory, long-range dependence, Holder continuity, differentiability,stationary increments fractional Brownian 

motion is a natural candidate. Many authors have studied applications of fractional Brownian motion. For instance in 
mathematical finance, Cheridito [Ch] constructed arbitrage strategies using fractional Brownian motion, Comte and 

Renault [Co] presented continuous time models with long memory and with fractional Brownian motion, and Rogers 

[Ro] discussed use of fractional Brownian motion in modeling long range dependence of share returns. In engineering 

applications, for instance, in [Du] a queue with an infinite buffer space and fractional Brownian motion as a long-range 

dependent input have been studied. In [No],Norros presented a model for connectionless traffic using fractional 

Brownian motion. In [Le], the self-similarity of fractional Brownian motion has been studied in capturing fractal 

behavior in Ethernet local area network traffic. 

 Herbin E. and Merzbach E. proved the “characterization of set-indexed fractional Brownian motion by flows”, 

(which saysthat a set-indexed process is a set-indexed fractional Brownian motion if and only if its projections on all the 

increasing paths are one-parameter time changed fractional Brownian motions (see [HeMe1])) is the key to most of the 

proofs in this article. It is of great importance since it allows us to “divide and conquer". Therefore, numerousproofs of 
set-indexed fractional Brownian motion can be recovered, by reducing to one-dimensional fractional Brownian 

motion.We extend some selected aspectsto theset indexed fractional Brownian motion for the following issues:self-

similarity, stationary increment, scaling,  -Holder continuous of order 0 H  , not Holder continuous of 

order H  , non-differentiability etc. 

 

Preliminaries 

The set-indexed framework: 

Let ( , )T  denote a non-void σ -compact connected topological space. In set indexed works (see [MeYo], [HeMe1], 

[IvMe]) , processes and filtrations will be indexed by a nonempty class A  of compact connected subsets of  T  is called 

an indexed collection if it satisfies the following: 

1. A . In addition, there is an increasing sequence ( )nB  of sets in A  such that       1n nT B

  . 

2. A is closed under arbitrary intersections and if ,A BA  are nonempty, then A B  is nonempty. If ( )iA  is 

an increasing sequence in A and if there exists n  such that i nA B  for every i , then
i iA A . 

3. ( ) A = B where B is the collection of Borel sets ofT . 

4. There exist an increasing sequence of finite sub-classes
1{ ,..., }

n

n n

n kA A A Aclosed under intersection 

with ( )n n, B A u  ( ( )nA u is the class of union of sets in nA ), and a sequence of 

functions : ( )n ng T A A u such that:  
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i. ng preserves arbitrary intersections and finite unions.  

ii. For each , ( )nA A g A A

and ( )n nA g A  , ( ) ( )n mg A g A  if n m  

iii. ( ) 'ng A A A if , 'A A A and ( ) 'n ng A A A  if AAand ' nA A . 

iv. ( )ng   for all n . 

(Note: ( )  and ( )  denote respectively the closure and the interior of a set). 

 

Examples of topological spaces T and indexed collections A :  

a. The classical example is 
dT    and ( ) {[0, ] : }d dx x   A = A .  

b. The example (a) may be generalized as follows. Let 
dT   and take A   to be the class of compact lower sets, 

i.e. the class of compact subsets A of T satisfying t A   implies[0, ]t  A (We denote the class of compact 

lower sets by ( )LsA ). 

 

 We will require other classes of sets generated by A . The first is ( )A u , which is the class of finite unions of 

sets in A . We note that ( )A u  is itself a lattice with the partial order induced by set inclusion. Let C consists of all the 

subsets of T of the form 

\ , , ( )C A B A B  A A u . 

 In addition, let 
ssA be any finite sub-semilattice of A closed under intersection. For    

ssA A , define the left 

neighborhood of A in 
ssA to be a set 

,
\ ssA B A B A

C A B
 

  . We note that ss ss AA A A A
A C

 
  and that the latter 

union is disjoint. The sets in
ssA can always be numbered in the following way: 0 'A  , ( ,' A A A   A , note that 

'  ) and given 0 1,..., iA A  , choose iA to be any set in 
ssA  such that iA A implies that jA A , some 

1,..., 1j i  . Any such numbering 0{ ,..., }ss

kA A A  will be called "consistent with the strong past" (i.e., if iC  is 

the left-neighborhood of iA  in
ssA , then 

1

0 0\i i

i j j j jC A A

    and i jC A   , for 

all 0,..., 1, 1,...,j i i k   ). 

 A set-indexed stochastic process { : }AX X A A  is additive if ithas an (almost sure) additive extension 

toC : 0X  and if 1 2, ,C C C C  with 1 2C C C   and 1 2C C   then almost surely
1 2C C CX X X  . In 

particular, if CC and 1\ n

i iC A A  , 1, ,..., nA A A A  then almost surely 

1
1

... ( 1) n
i i j i i

n
n

C A A A A A A A A
i i j

X X X X X


 

         
. 

 

Set indexed fractional Brownian motions: 
 The key ingredient for characterization of set-indexed fractional Brownian motion is the use of a flow; that is, 

increasing function from interval [ , ]a b to ( )A u . The judicious construction of a flow with particular properties permits 

us to reduce the general problem to one dimension. The definition of a flow is as follows: 

 Let [ , ]a b  . A strict flow (shortly, flow) is defined to be a continuous increasing 

function :[ , ] ( )f a b A u , i.e. such that 

a. , [ , ]s t a b  ; ( ) ( )s t f s f t    

b. , [ , )s t a b  ; ( ) ( )v sf s f v   

c. , ( , )s t a b  ; ( ) ( )u sf s f u . 

The notion of flow was introduced in [CaWa] and used by several authors[Da], [He].  

Given a set indexed stochastic process X  and the flow :[ , ] ( )f a b A u , we define a process Y  indexed by [ , ]a b  

as follows: 
( )

f

s f s sY X X  for all [ , ]s a b . 

 



International Journal of Advance Engineering and Research Development (IJAERD) 
Volume 4, Issue 06, June -2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406 

 

@IJAERD-2017, All rights Reserved  258 
 

Definition 1. A positive measure on ( , )T B  is called strictly monotone on A  if:       ' 0  and A B   for 

all A B , ,A BA .  The collection of these measures is denoted by ( )M A . 

 

Recall that the fractional Brownian motion (fBM) { : 0}H H

tX X t  is defined to be a mean-zero Gaussian process 

with the covariance function 
2 2 21

2
[ ] | |H H H H H

s tE X X s t t s      for all , 0s t   

 (Equivalently, 
2 2[( ) ] | |H H H

s tE X X t s   for all , 0s t  ). This process has a parameter (0,1)H  , called the 

Hurst parameter or the Hurst index. The natural set-indexed extension of this process is to substitute the 

term
2| | Ht s with

2( ) HA B  : 

Definition 2.Let ( )M A . We say that { : }H H

AX X A A is a set indexed fractional Brownian motion of 

parameter H  (sifBM) if 
HX is a centered Gaussian processsuch 

that
2 2 21

2
[ ] [ ( ) ( ) ( ) ]H H H H H

A BE X X A B A B      for all ,A BA , where
1
2

0 H  . 

(For more details about sifBMsee[HeMe1],[ HeMe2], [HeMe3]) 

 

Lemma 1: Let 0{ ' ,..., }SS

kA A A   be any finite sub-semilattice of A equipped with a numbering consistent with 

the strong past.  

Then there exists a flow : [0, ] ( )f k  A u such that the following are satisfied: 

1. 
0

(0) ', ( )
k

j j
f f k A


    

2. Each left-neighbourhood C generated by 
SSA  is of the form ( ) \ ( 1)C f i f i  for all 1 .i k   

3. If ( ) \ ( )C f t f s  then ( )CC u and
*

( )f s C
F G . 

The proof appears in [IvMe].  

 

Definition 3.A set-indexed process { : }AX X A A is said
2L -monotone outer-continuous if AX is: 

a. Square-integrable for all AA . 

b. For any decreasing sequence 1{ }n nA 

 A , 
1

2lim [| | ] 0
n m m

A An
E X X 


 


. 

 

Theorem 1 is the key to most of the proofs in this article. Therefore, many of proofs of sifBMcan be recovered, by 

reducing to one-dimensional fBM. It is the important “bridge” from sifBM to fBM and from that we extend following 

issues: self-similarity, stationary increment, scaling,  -Holder continuous of order 0 H  , not -Holder 

continuous of order H  , non-differentiabilityetc. 

Theorem 1(The characterization of set-indexedfractional Brownian motion by flows): Let { : }AX X A A  be a 

2L -monotone outer-continuousset-indexed stochastic process and ( )M A . X issifBM if and only if the process 

fX  is time-change fractionalBrownian motion of parameter
1
2

0 H   for all flows : [ , ] ( )f a b  A u . (The 

process
fX  is called a time-change fractional Brownian motion if there exists : [ , ] [ , ]a b a b  such that 

fX 
is a 

fractional Brownian motion, for some a strict continuous flow : [ , ] ( )f a b  A u ), i.e. such that 

2 2[( ) ] | ( ( ( ))) ( ( ( ))) |f f H

t sE X X f t f s        
for all , [ , ]s t a b ). 

The proof appears in [HeMe3], [HeMe1]. 

 

Remarks:  

a. If 
1
2

H  then 
HX is awell-known set indexed Brownian motion. ([HeMe3]). 

b. The characterization of set-indexedBrownian motion by flows you can see in [MeYo]. 

 

 

From Theorem 1 and Lemma 1, we derive: 

Lemma 2:Let ( )M A and { : }H H

AX X A A be a sifBM. 
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1. If 1{ }k

i iA  be an increasing sequence in ( )A u  then there exists a flow : [0, ] ( )f k  A u , 

(0) 'f   and ( )
i

f i A  for all 1 i k  , such that  
f

HX  is a time-change fBM. (In other words, 

there exists : [ , ] [ , ]a b a b  such that  
f

HX


is afBM, for some a flow : [ , ] ( )f a b  A u , i.e. 

such that     
2

2| ( ( ( ))) ( ( ( ))) |
f f

H H H

t s
E X X f t f s

 

   
 

   
 

 
 for all , [ , ]s t a b . 

2. If 1{ }i iA 

 be an increasing sequence in ( )A u then there exists a flow : [0, ) ( )f   A u , (0) 'f   and 

( )
i

f i A  for all 1 i , such that  
f

HX  is a time-change fBM. 

Proof. 

a. Let 1{ }k

i iA  be an increasing sequence in A . Without loss of generality, we may assume that the sets 1{ }k

i iC   

are the left-neighborhoods of the sub-semilattice
ssA  of A equipped with a numbering consistent with the 

strong past when 1 1C A  and 1\i i iC A A   for all 2 i k  . According to Lemma 1, there exists a flow 

: [0, ] ( )
k

f k  A u  such that each left-neighborhood generated by 
ssA  is of the 

form ( ) \ ( 1)iC f i f i  ,1 i k   and
*

( )kf i C
F G . X is a sifBM then by Theorem 1, the process 

  kfHX  is a time-change fBM. 

b. Notice that for each k , 
1k k

f f


 on [0, ]k . Then, We can define the function  : [0, ) ( )f   A u  by 

[ ] 1
( ) ( )

t
f t f t


  for all t .  

 

Continuity and differentiability 

 

Definition 4.Let ( )M A be a positive and continuous measure in A . If AA  and 0  then 

define { : , ( \ ) }AD B A B B A     A . Denote by A
 the element in AD

and assume that AD   . (Note: If 

0  then
0A A A   ) 

Hereafter, we assume that the space T has a positive and continuous measure ( )M  A in A such that for all AA  

there exists a A
, ( \ )A A  for all 0  . 

The classical examples are:
dT    and ( ) {[0, ] : }d dx x   A = A  or ( )LsA = A when  is Lebesgue 

measure (see [MeYo], [IvMe]). 

 

Definition 5.Let { : }AX X A A  be a set-indexed stochastic process. 

a. X is said to be  -Holder continuous at AA if there exists 0, 0M    such that AA
X X M

   

for all 0    , for all AA D   and 0 1  . 

b. X is said to be differentiable at AA if there exists a random variable Y such that 
0

lim 0
AA

X X

Y



 




  for 

all AA D  and denote 'AY X (the limit is mean in the sense of almost surely convergence). 

 

Theorem 2.( -Holder continuity and non-differentiability) Let { : }H H

AX X A A  be a sifBM. 

a. If 0 H   then 
H

AX is a  -Holder continuous at AA , almost everywhere. 

b. X is not differentiable at AA , for almost all .(In other words, sifBM is nowhere differentiable almost 

surely), in fact, 
0

lim sup

H H

AA
X X

 


   with probability 1.  

Proof. 

http://mathworld.wolfram.com/Differentiable.html
http://mathworld.wolfram.com/AlmostEverywhere.html
http://mathworld.wolfram.com/AlmostEverywhere.html
http://mathworld.wolfram.com/AlmostEverywhere.html
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Let AAand AA D  . According to Lemma 2, there exists a flow : [0, ) ( )f   A u  and there 

exists 0 t t  such that  
f

HX is a time-change fBMand ( ), ( )A f t A f t   . Thus, there exists 

: [0, ) [0, )     and 0     such that  
f

HX


is a fBM and 

( ) ( ( )), ( ) ( ( ))A f t f A f t f          

a.  
f

HX


is a fBM (We recall that, if { : 0}H H

tW W t   is a fBMand 0 H  , then W  is a  -Holder 

continuous path almost everywhere), then there exists a 0, 0M    such 

that    
f f

H HX X M


 


 
 

 
 for all 0    . But     

f f
H H H H

AA
X X X X

 

 
  

 
 then 

there exists a 0, 0M    such that 
H H

AA
X X M

   for all 0    , for all AA D   and 

0 H  . 

b.  
f

HX


is a fBM, (We recall that, if { : 0}H H

tW W t   is a fBM, then 
0

lim sup
H H

t tW W

 






  , with 

probability 1) then  

   
0 0

lim sup lim sup

f f
H HH H

AA
X XX X 

 

 

    


  

 

,with probability 1. 

Moreover, X is not differentiable at AA .   

 

The following theorem shows in particular that the sifBM is not  -Holder continuous of order H  .  

Theorem 3: Let { : }H H

AX X A A  be a sifBM then for all AA , 

2 10

lim sup 1
2 log log( )

H H

AA

H

X X





 , almost surely. 

Proof. 

Let AAand AA D  . According to Lemma 2, there exists a flow : [0, ) ( )f   A u  and there exists  0 t t   

such that  
f

HX is a time-change fBM and ( ), ( )A f t A f t   . Thus, there exists a : [0, ) [0, )     and 

0     such that  
f

HX


is a fBMand ( ) ( ( ))A f t f     , ( ) ( ( ))A f t f    . (We recall that, if 

{ : 0}H

tW W t  is a one-parameter fBM, then
2 10

lim sup 1
2 log log( )

H H

t t

H

W W









  ). Thus, 

   
2 21 10 0

lim sup lim sup 1
2 log log( ) 2 log log( )

f f
H HH H

AA

H H

X XX X 

 

 

 
    


 

 

, almost surely.   

 

Self-similarity 

 

 To study a set-indexed version of the notion of self-similarity for a set-indexed process, we need some 

assumptions about the set A . 

 

Definition 6.Let ( )M A be a positive and continuous measure in A . If AA , ( ) 0A   and 0  then 

a. Define
( )

( )
{ : }

B

A A
B




   A . Denote by 

[ ]A 
 the element in A

 and assume that A

  .  

b. Define
[ ] [ ] [ ] [ ] [ ]

[ ] { : , , ( ) }A A BA B B A B A B                A .Denote by [ ]A 
 the element in 

[ ]A

 and assume that 
[ ]A

  .  

Hereafter, we assume that the space T has a positive and continuous measure ( )M A in A such that 



International Journal of Advance Engineering and Research Development (IJAERD) 
Volume 4, Issue 06, June -2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406 

 

@IJAERD-2017, All rights Reserved  261 
 

a. For all AA  there exists a
[ ]A 

, 
[ ]( ) ( )A A  for all 0  . 

b. For all ,A BA and for all 0   there exists a 
[ ][ ] AA    and

[ ][ ] BB   such 

that[ ] [ ] [ ]A B A B     . 

 

Example: 
dT   and ( ) {[0, ] : }d dx x   A = A . Let [0, ]A x , [0, ]B y and 0   

where 1 2( , ,..., ) d

dx x x x    and 1 2( , ,..., ) d

dy y y y   then there exists 

a
1[ ] [0, ] [0, ]d d

d AA x x      and 
1 2[ ] [0, ] [0, ] [0, ]d d d

d BB y y y        such that 

([ ] ) ( )A A  , ([ ] ) ( )B B   and [ ] [ ] [ ]A B A B     . 

 

Definition 7.A set-indexed process { : }AX X A A  is said to be self-similar of index H  if 
2

[ ]

d
H

AA
X X  for all 

AA , for all 0   and for all 
[ ][ ] AA   (the notation  

d

  mean identical distribution). 

 

Theorem 4(Self-similarity of sifBM): The set-indexed fractional Brownian motion { : }H H

AX X A A  is self-similar 

of index H . 

Proof:For all ,A BA , we have  

2 2 21
2[ ] [ ]

[ ] [ ([ ] ) ([ ] ) ([ ] ) ]H H H H H

A B
E X X A B A B 

          

2 2 2 2 21
2
[ ( ) ( ) ( ]) ]H H H H HA B A B          2 [ ]H H H

A BE X X .  

Therefore, the two mean-zero Gaussian processes 
[ ]A

X   and 
2H

AX have the same law, for all AA .  

 

Corollary:Let { : }H H

AX X A A  be a sifBM. 

a. (Stationary increment)For any 0  , 0A A ,the processes { : }H H

AW W A A and 
HX have the same 

probability distribution, when  
0

1

[ ] [ ]H

H H H

A A A
W X X 


  . 

b. (Scaling) For any 0  , the process { : }H H

AW W A A is asifBM when 1

[ ]H

H H

A A
W X 


  

Proof.  

a. For all ,A BA , we have 

   2 2

22
21 1

[ ] [ ]
([ ] )H H

H H H H H

A B A B
E W W E X X A B 



 
      

      
 

Based on Theorem 4, 2

1

[ ] [ ]
[ ] [ ] [ ]H

H H H H H H

A B A BA B
E W X E X X E X X 


  . Therefore, the two mean-zero 

Gaussian processes 
H

AW  and AX have the same law, for all AA . 

b. According to Theorem 4, 2

1

[ ] [ ]
[ ] [ ] [ ]H

H H H H H H

A B A BA B
E W X E X X E X X 


  .   
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