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Abstract-Graph matching is a fundamental problem that arises frequently in the areas of distributed control, computer 

vision, and facility allocation. In this paper, we consider the optimal graph matching problem for real time dataset like 

fish, house, and bird. Weighted graph matching algorithm is efficient for large number of dataset. The WGMP is the 

problem of finding the optimum matching between two weighted graphs, which are graphs with weights at each arc. The 

proposed method employs an analytic, instead of a combinatorial or iterative, approach to the optimum matching 

problem of such graphs. By using the eigendecompositions of the adjacency matrices (in the case of the undirected graph 

matching problem) or some Hermitian matrices derived from the adjacency matrices (in the case of the directed graph 

matching problem), a matching close to the optimum one can be found efficiently when the graphs are sufficiently close 

to each other. Simulation experiments are also given to evaluate the performance of the proposed method.  

 

Keywords---Graph Matching, Weighted graph matching algorithm, modified frank-Wolfe, frank Wolfe algorithm. 

 

I. INTRODUCTION 

 

Given two graphs with weights on edges, the weighted graph matching problem searches for an optimal permutation 

of nodes of one graph so that the difference between the edge weights is minimized. Graph matching problems arise 

frequently in computer vision, facility allocation problems, as well as distributed control. 

In computer vision, matching structural descriptions of an object to those of a model is formulated as a graph matching 

problem [6], [7], [8].They treat weighted graphs with the same number of nodes and employ an analytic approach by 

using the Eigen-structure of adjacency matrices (undirected graph matching) or some Hermitian matrices derived from 

the adjacency matrices (directed graph matching). An almost optimal matching can be found when the graphs are 

sufficiently close to each other. In [7], [15], [19] the authors propose a Lagrangian Relaxation Network for the same 

problem. They formulate the permutation matrix constraints in the framework of deterministic annealing and achieve 

exact constraint satisfaction at each temperature within deterministic annealing. More recently, semi-definite 

programming relaxations for the quadratic assignment problem have been proposed in [9] and [10]. In particular, in [9] 

the authors propose a cutting planes algorithm that provides good solutions. 

Since permutation matrices live in the intersection of the non-convex space of orthogonal matrices and the space of 

non-negative (element-wise) matrices, the above optimization-based approaches relax the non-convex orthogonality 

constraint. In this paper, we take the opposite approach, and relax the non-negativity constraint by defining dynamical 

systems that are, by construction, guaranteed to evolve on the manifold of orthogonal matrices. In particular, we 

construct two gradient flows, one that minimizes the cost of weighted graph matching over orthogonal matrices, and a 

second that minimizes the distance of an orthogonal matrix from the set of permutations[16],[11],[21].  

The combination of the two dynamical systems converges to a permutation matrix, which provides a suboptimal 

solution to the weighted graph matching problem. In the spirit of analogsolutions to combinatorial problems, our 

approach is inspired by the so-called iso-spectral double-bracket dynamical system that sorts lists and solves various 

combinatorial problems [1], [2] (see also [3], [4], [5]). We illustrate our approach in examples involving more than 50 

nodes, which are considered practically intractable, and also challenging for semi-definite relaxations using standardized 

optimization packages. This shows that our method is very promising. We also argue that, for applications where 

mobility is critical, such as distributed robotics, our approach is also more natural. 

 

II. EXISTING METHOD 

A. Path following algorithm for graph matching 

Our approach is similar to graduated non-convexity. This approach is often used to approximate the global minimum 

of a non-convex objective function. This function consists of two parts, the convex component and non-convex 

component, and the graduated non-convexity framework proposes to track the linear combination of the convex and 

nonconvex parts (from the convex relaxation to the true objective function) to approximate the minimum of the non-

convex function. The PATH algorithm may indeed be considered as an example of such an approach. However, the main 

difference is the construction of the objective function. Unlike, we construct two relaxations of the initial optimization 

problem, which lead to the same value on the set of interest (P), the goal being to choose convex/ concave relaxations 

that approximate in the best way the objective function on the set of permutation matrices. 

B. Pseudo Code For Path Following Algorithm 
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Given a pair of graphs, G1 = {P1, Q1, G1, H1} and G2 = {P2, Q2, G2, H2}.we compute two affinity matrices, 

Kp ∈  R n1×n2 and Kq ∈  R m1×m2 , to measure the similarity of each node and edge pair respectively.Given two graphs 

and the associated affinity matrices, the problem of GM consists in finding the optimal correspondence X between nodes, 

such that the sum of the node and edge compatibility is maximized: 

 

 
Where,  

X=input data, Kp,Kq-Edge pair, G1,G2-Verticies 

By using this equation and modified frank-Wolfe, frank Wolfe algorithm we find out optimal path between two graphs. 

 

III. PROPOSED METHOD 

A. Block Diagram For Proposed Method 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Fig.1 Process flow for proposed method 

 

Input dataset 

Find vertices 

Find edges 

Maximum Weighted Graph 

Matching algorithm 

 

Find adjacency matrix 

Input:  Kp,Kq,G1,H1,G2,H2,Θ,α0 

Output:  X 

1. Initialize X to be a doubly stochastic 

matrix 

2. Factorize Kq: UV^T 

3. For α=0: Θ :1 do path-following 

4. If  α=0.5 & Jgm(X)<Jgm(X0) then 

5. Update X-X0 

6. Optimize the data using Modified 

Frank-wolfe algorithm to obtain X* 

7. If Jgm(X*)< Jgm(X) then 

8. Optimize data using Frank-wolf 

algorithm to obtain X* 

9. Update X-X0 

10. End 
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In our project, the dataset here we are taken as Fish, house, pot, jag and etc.., we will see the dataset description in below 

section. 

B. Adjacency Matrix 

An adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether 

pairs of vertices are adjacent or not in the graph.In the special case of a finite simple graph, the adjacency matrix is a (0, 

1)-matrix with zeros on its diagonal. If the graph is undirected, the adjacency matrix is symmetric [13],[17],[20]. The 

relationship between a graph and the eigenvalues and eigenvectors of its adjacency matrix is studied in spectral graph 

theory. 

C. Vertices And Edges 

A vertex (plural: vertices) is a point where two or more lines meet. An edge is a line segment that joins two vertices. 

D. Maximum Weighted Graph Matching 

A weighted graph G is an ordered pair(V,W), where V is a set of nodes, w is the weighting function which gives a 

real non-negative value. Let G and H be weighted undirected graphs and AG and A, be their adjacency matrices, 

respectively. The optimum matching between G and H is a permutation matrix P which minimizes J(P). It is, in general, 

difficult to find this matrix P directly. However, if we extend the domain of J to the set of orthogonal matrices, the 

orthogonal matrices (Q) which minimize J(Q) can be obtained in closed forms by using the Eigen decomposition of the 

adjacency matrices AG and AH. This extension of the domain is very natural because a permutation matrix is a kind of 

orthogonal matrix. A nearly optimum permutation matrix is determined by using these orthogonal matrices as clues. 

Here, we assume that both adjacency matrices AG and A, have n distinct eigenvalues, respectively. This is not a strong 

assumption for real data. Besides that, even if they have multiple roots, this can be overcome by perturbing them. Small 

perturbations will not effect the result of matching. 

E. Pseudo Code For Weighted Graph Matching 

Before looking into the pseudo code and the formal analysis of the algorithm, let us first gain some intuition on how 

the algorithm works. . Each process sitting on its corresponding node can see who the neighboring nodes are, and what 

are the costs (weights) of edges that lead to those nodes. 

It can also communicate with all the neighboring nodes by sending and receiving messages.How can a node tell if 

some edge is locally heaviest? Well, suppose that for an edge e = (u, v) both u and v see this edge as the heaviest one of 

all the edges they can see. Then, e is heavier than all the edges incident to it, that is, locally heaviest edge.Now, if u and v 

choose each other as a matching pair, and notify all their remaining neighbors about it, their neighbors can stop looking 

at the edges incident to (u, v), which corresponds to removing these edges from the graph. Intuitively, by running this 

procedure on  all the nodes over and over again, until all of them find their matching pair (or become lonely–i.e., see no 

neighbours). 

F. Pseudo Code For Maximum Weighted Graph Matching 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

Greedy-Distributed (G, V) 

R=Ө 

N=T(U) 

C=candidate(V,N) 

If C`=null 

Send <req> to C 

While(N=Ө) 

Receive message from neighbor u 

If m=<req> 

R=RÙ{u} 

If m=<drop> 

 N=N\{u},R=R\{u} 

If u=c 

C=candidate (V, N) 

If c~=null 

Send <req> to C 

If c~=null^C€R 

Forall w€N\{C} 

Send <drop> to w;N=Ө 

End 

https://en.wikipedia.org/wiki/Square_matrix
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Simple_graph
https://en.wikipedia.org/wiki/(0,1)-matrix
https://en.wikipedia.org/wiki/(0,1)-matrix
https://en.wikipedia.org/wiki/(0,1)-matrix
https://en.wikipedia.org/wiki/Symmetric_matrix
https://en.wikipedia.org/wiki/Eigenvalue
https://en.wikipedia.org/wiki/Eigenvector
https://en.wikipedia.org/wiki/Spectral_graph_theory
https://en.wikipedia.org/wiki/Spectral_graph_theory
https://en.wikipedia.org/wiki/Spectral_graph_theory
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Fig.2 Flow diagram for maximum weighted graph matching 

We should eventually get the same matching as we would for some run of the Greedy-Centralized algorithm.To 

formalize the statement of the algorithm described above, let us introduce some notation. We will denote by Γ(v) the set 

of neighbors of the node v in the original graph G. As every time a v’s neighbor u gets matched it cannot be considered 

as a matching pair for v anymore, we want to drop an edge (u, v) from the graph when this happens, and observe only 

those neighbors that v can still match to. We will assume that when u gets matched to another node it sends a drop 

message to v (and all other non-matching neighbors), and denote the set of neighbors who are possible matches for v by 

N (v). Looking at N (v), v will choose the heaviest edge it can see and send a request to the neighbor adjacent to that 

edge. We will call this neighbor a candidate and denote it by c(v). If v receives a request message from its candidate 

neighbor, it knows that the edge (v, c(v)) is locally heaviest and chooses c(v) as its matching pair. We will allow every 

node to store the list R of the unmatched nodes it received a request message from, and update it every time a request or 

drop message arrives. 

G. Dataset Description 

This experiment performed a comparative evaluation of GM algorithms on randomly synthesized graphs. For each 

trial, we constructed two identical graphs, G1 and G2, each of which consists of 20 inliers nodes and later we added nout 

outlier nodes in both graphs. edge density parameter ρ ∈  [0, 1]. For each pair of nodes, the edge was randomly generated 

according to the edge density parameter ρ ∈  [0, 1]. . Each edge in the first graph was assigned a random edge score 

distributed uniformly as q 1 c ∼ U(0, 1) and the corresponding edge q 2 c = q 1 c + in the second graph was perturbed by 

adding a random Gaussian noise  ∼ N (0, σ2 ). Notice that the edge feature was asymmetrical. The edge affinity Kq was 

computed as k q c1c2 = exp(−(q 1 c1−q 2 c2 ) 2/0.15) and the node affinity Kp was set to zero. The CMU house image 

sequence4 was commonly used to test the performance of graph matching algorithms. This dataset consists of 111 frames 

of a house, eachof which has been manually labeled with 30 landmarks. We used Delaunay triangulation to connect the 

landmarks. The edge weight qc was computed as the pair wise distance between the connected nodes. Due to the 

symmetry of distance-based  

feature, the edge was undirected. Given an image pair, the edge-affinity matrix Kq was computed by k q c1c2 = exp(−(q 

1 c1 −q 2 c2 ) 2/2500) and the node-affinity Kp was set to zero. We tested the performance of all methods as a function 

of the separation between frames. We matched all possible image pairs, spaced by 0 : 10 : 90 frames and computed the 

average matching accuracy and objective ratio per sequence gap. We tested the performance of GM methods under two 

scenarios. In the first case we used all 30 nodes (i.e., landmarks) and in the second one we matched sub-graphs by 

randomly picking 25 landmarks. First of all, DEN achieved the worst performance, because it only relies on the graph 

topology to find the correspondence. Secondly, IPFP-S, RRWM, CAV, FGMU and FGM-D almost obtained perfect 

Given graph G= (AUB,E) 

Direct the edge from A to B 

Add new vertices s and t 

Add an edge from s to every vertex in 

A 

Add an edge from vertex in B to t 

Make all the capacities 1 

Solve maximum network flow problem 

on this new graph using Fold-

Fulkerson algorithm 
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matching of the original graphs in the first case. As some nodes became invisible and the graph got corrupted, the 

performance of all the methods degraded. The results demonstrate the advantages of the maximum weighted graph 

matching algorithm over other state of-the-art methods in solving general GM problems. 

 

IV. RESULTS AND DISCUSSION 

Project, the dataset here we are taken as Fish, house, pot, jag and described below the diagram 

 
Fig.3 Input dataset 

 

 
Fig.4 Path following algorithm 

 

AMatrix is stored as a general graph, where rows and columns of the matrix represent vertices, and the nonzero elements 

represent edges. 

 

 
Fig.5 Maximum weighted graph matching 

 

A d-dimensional random geometric graph (RGG), represented as G(n, r(n)), is a graph generated by randomly placing n 

vertices in a d-dimensional space and connecting pairs of vertices whose Euclidean distance is less than or equal to r(n). 
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Fig.6 Fish data1 

 

Fig6 and fig 7 represents the various fish data set snap on the proposed system algorithm 

 
Fig.7 Fish data2 

 

 
Fig.8 Matching using maximum weighted graph matching 
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Fig.9 Accuracy comparison 

Fig 9 presents the relative performance of different half approximation algorithms. The two main categories of 

approximation algorithms are the sorting-based algorithms.From the experimental results it can be observed that the 

proposed algorithm computes matching’s of high quality at high speed. 

 

 

 
Fig.10 Objective ratio 

 

 
Fig.11 Edge affinity matrices 

 

Fig 10 and 11 Compute time for different matrices with different number of processors. Compute time in seconds (log2 

scale) is plotted on the Y-axis, and the number of processors is plotted on the X-axis. Max is the maximum time on any 

given processor in the set, and Avg is the average time for a given set of processors. 

 

V. CONCLUSION 

The approximate solution for the WGMP has been given in both the undirected and directed cases. The proposed 

method employs an analytic approach based on the Eigen decomposition of the adjacency matrix of a graph and al- most 

always gives the optimum matching when a pair of graphs is nearly isomorphic. If graphs are not sufficiently close to 
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each other, the proposed method sometimes fails to give the optimum matching. However, the hill-climbing method can 

improve the obtained matching even in this case since the obtained matching reflects the global correspondence between 

graphs. This method is resistant to the combinatorial explosion in execution time compared to the purely combinatorial 

approach. It also has the virtue of global optimization, unlike the local optimization method. 
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