
 International Journal of Advance Engineering and Research
Development

Volume 4, Issue 4, April -2017

@IJAERD-2017, All rights Reserved 177

Scientific Journal of Impact Factor (SJIF): 4.72
e-ISSN (O): 2348-4470
p-ISSN (P): 2348-6406

Refining Data Exchange Methodologies using JavaScript Object Notation

Yogesh Kumar Das,Pulkit Jain

B. Tech Computer Science Engineering, SRM University

B. Tech Computer Science Engineering, SRM University

Abstract—When designing an application that will communicate with a remote computer, a data format and exchange

protocol must be selected. There are a variety of open, standardized options, and the ideal choice depends on the

applications requirements and pre-existing functionality. For example, SOAP-based web services format the data in an

XML payload wrapped within a SOAP envelope.While XML works well for many application scenarios, it has some

drawbacks that make it less than ideal for others. One such space where XML is often less than ideal is with Ajax-style

web applications. While most browsers can construct, send, and parse XML, JavaScript Object Notation (or JSON)

provides a standardized data exchange format that is better-suited for Ajax-style web applications.When the client is

created with JavaScript in a browser it's much easier to exchange data with something called JSON. JSON is an

acronym for JavaScript Object Notation. It is a sting-like notation that makes it easy to declare complex structures like

arrays and object.JSON is a data exchange format that was created from a subset of the literal object notation in

JavaScript.The charm of JSON is in its simplicity. A message formatted according to the JSON standard is composed of

a single top-level object or array. The array elements and object values can be objects, arrays, strings, numbers, Boolean

values (true and false), or null.

Keywords-JSON;AJAX;Data feed; Remote procedure call; serialization; deserialization; Asynchronous calling

I. INTRODUCTION

JSON or JavaScript Object Notation is a very popular data interchange format. It was developed by Douglas

Crockford. JSON is text-based, lightweight, and a human readable format for data exchange between clients and servers.

JSON can be used in web applications for data transfer. Prior to JSON, XML wasconsidered to be the chosen data

interchange format. XML DOM implementation made life tedious, as querying for data had to be performed at two

levels:

 First on the server side where the data was being queried from a database, and the

 Second time was on the client side using XPath. JSON does not need any specific implementations.XML is

much more difficult to parse than JSON.JSON is parsed into a ready to use javascript object.

Languages such as PHP, Python, C#, C++, and Java provide a very good support for the JSON data interchange

format. All the popular programming languages that support service-oriented architecture have understood the

importance of JSON and its implementation for data transfer, thus, they have provided great support for JSON.A widely-

used application of JSON is in mobile apps. Communication between the mobile device and the web server comes about

by means of JSON calls. Data communication via JSON is such a popular method for mobile applications because the

JSON data is so lightweight and can therefore be sent quickly and efficiently through a mobile connection.Another

commonly used application of JSON is in websites. JSON allows just parts of the web page, and not the entire page, to be

refreshed and updated. This means the web browser can refresh a fragment of the web page with very little effort, giving

the visitor a smooth online user experience

II. DATA FEED

A JSON feed is a data format in JavaScript and is used as a communication method between web browser and

web server. The JSON data can be fed in different formats, such as simple type (both string and numeric) as well as

complex type (like arrays and data objects). A data feedserves the purpose of JSON application; a feed is a crude way of

supplying data so that others can reuseit to display the data on their websites or to ingest the data and run their

algorithmson it. Such data feeds are big in size and cannot directly be embedded into the script. It can be retrievedeither

as a response from an asynchronous request or from a JSON feed.

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 4, Issue 4, April -2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2017, All rights Reserved 178

III. ACCESSING OBJECT USING JSON

To traverse through any JSON feed, it is important to make a note of how the data is arranged. There are two

ways to access data in a JSON object: dot syntax or array notation.

 Dot-syntax: It is a way of indicating an object’s property—specifically, by adding a period between the name of

the object and the property you wish to access. You’ve seen this in use with properties of different JavaScript

objects like strings and arrays. Dot notation is designed for easy, general use and common use cases. Queries of

JSON data that use dot-notation syntax return JSON values whenever possible. If a single JSON value is

targeted, then that value is the string content, whether it is a JSON scalar, object, or array. If multiple JSON

values are targeted, then the string content is a JSON array whose elements are those values. The dot-

notation syntax is a table alias (mandatory) followed by a dot, that is, a period (.), the name of a JSON column,

and one or more pairs of the formjson_field orjson_fieldfollowed by array_step, where json_field is a JSON

field name and array_step is an array step expression as described in Basic SQL/JSON Path Expression Syntax.

 Array Notification: To tackle an array of objects, we have to handle them in an iterative method. To resolve this

we use an iterative solution in which we target one object at a time; once the object is accessed, we would not

target that object another time. This allows us to maintain data integrity as we can avoid accessing the same

object multiple times, thereby avoiding any redundancies.

Image No 1

Steps for Invoking JSON-based Web Service

IV. DATA TRANSFER INBETWEEN SERVER AND CLIENT

4.1. Server-Side Operations:

4.1.1. Data Transmission:

 Create JSONObject Java object

 Add name/value pairs using put method

 Convert it to String type using toString method and send it to the client with content-type as “text/xml” or

“text/plain”

Example:

myString = new JSONObject (). put (“JSON”,“Hello, World!”).toString(); // myString is {“JSON”: “Hello,

World”}

 4.1.2. Data Reception:

 Read the JSON data as a String type

 Create JSONObject Java object from the string

Example:

String json = readJSONStringFromRequestBody(request); //Use the JSON-Java binding library to create a JSON

object in Java JSONObjectjsonObject = null;

 try

{

jsonObject = new JSONObject(json);}

 catch(ParseExceptionpe) {}

4.2. Client-Side Operation:

4.2.1. Data Transmission:

 Create JSON JavaScript object

 Use “POST” HTTP method in the open method of the XMLHttpRequest object

 Pass JSON JavaScript object in the send method of XMLHttpRequest object

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 4, Issue 4, April -2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2017, All rights Reserved 179

Example:

varcarAsJSON = JSON.stringify(car);

varurl = “JSONExample?timeStamp=” + new Date().getTime();

createXMLHttpRequest();

xmlHttp.open(“POST” , url, true);

xmlHttp.onreadystatechange = handleStateChange;

xmlHttp.setRequestHeader(“Content-Type” , “application/x-www-form-urlencoded”);

xmlHttp.send(carAsJSON);

4.2.2. Data Reception:

 JSON data is received as a string

 Calling eval() will generate JSON object in JavaScript code

varJSONdata = eval(req.responseText);

 Once you have JSON object, you can use . notation to access its properties

var name = JSONdata.name;

var address = JSONdata.addresses[3];

varstreetname = JSONdata.addresses[3].street;

V. MODIFYING JSON

JSON retrieved from a JSON feed is always going to be read-only; as such data feedsdo not provide

functionality to modify their data from unverified sources. There are many cases where we would want to ingest the data

from an external data feed, and then modify that content as per our requirements.JSON provides us with features which

help modify json objects that represent json arrays and object. Json declare the following set() methods for modifying

json array elements and json object properties:

 Json set(int index ,Object value)

 Json set(String propName,json value)

 Json set(String property ,Object value)

string json = @"{

 'channel': {

 'title': 'Star Wars',

 'link': 'http://www.starwars.com',

 'description': 'Star Wars blog.',

 'obsolete': 'Obsolete value',

 'item': []

 }

 }";

JObjectrss = JObject.Parse(json);

JObject channel = (JObject)rss["channel"];

channel["title"] = ((string)channel["title"]).ToUpper();

channel["description"] = ((string)channel["description"]).ToUpper();

channel.Property("obsolete").Remove();

channel.Property("description").AddAfterSelf(new JProperty("new", "New value"));

JArray item = (JArray)channel["item"];

item.Add("Item 1");

item.Add("Item 2");

Console.WriteLine(rss.ToString());

VI. AJAX CALLS WITH JSON DATA

In AJAX (AsynchronousJavaScript and XML), web requests are made via JavaScript and the data

interchangeoriginally happened in XML. The "X" in AJAX was originally considered to be XML,but today it can be any

data interchange format, such as XML, JSON, text file, oreven HTML. The data format being used for the data transfer

has to be mentionedin the MIME type headers.

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 4, Issue 4, April -2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2017, All rights Reserved 180

Dynamic web development is all about data transfer between two parties, the client and the server. We use

programs such as a web server, a database, and a server-side programming language to fetch and store dynamic data. In

AJAX (Asynchronous JavaScript and XML), web requests are made via JavaScript and the data interchangeoriginally

happened in XML. Asynchronous requests allow developers to divide web pages into multiple components independent

of each other, thereby saving a lot of memory by sending data on demand.

Table No 1

Basic AJAX call sample code for server and client-side application

Table No 2

Description of various Ajax properties

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 4, Issue 4, April -2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2017, All rights Reserved 181

VII. JSON-REMOTE PROCEDURE CONTROL

 JSON-RPC is a simple remote procedure call protocol similar to XML-RPC although it uses thelightweight

JSON format instead of XML.

 JSON-RPC-Java is a Java implementation of the JSON-RPC protocol.

 It allows you to transparently call server-side Java code from JavaScript with an included lightweight JSON-

RPC JavaScript client

 It is designed to run in a Servlet container such as Tomcat and can be used with J2EE Application servers to

allow calling of plain Java or EJB methods from within a JavaScript DHTML web application

Image No 2

Asynchronous Interaction Using AJAX

VIII. EXPERIMENTAL EVALUATION

In this section, experiments were employed to verify the performance of the DMT driven JSON

processingapproach. It was compare with that of the XML-based web services. Experiments were conducted on a PCwith

1.73 Intel Core Duo CPU, 2GB Memory installed with Windows XP Profession SP3. The JVM used is JDK1.6.0 and

Apache Tomcat 5.5 was exploited as the Web container. XML and JSON data wasparsed with Simple 2.5.2 and

Jackson1.7.6, respectively. Experiments were conducted to investigate the scalability of serializing/deserializing java

data objects to/from JSON and XML data objects. The time was measured for serializing/deserializing as the size of data

objects changed from 2kb to 12kb.

 Graph No 1

(a) Comparison of Serialization (b) Comparison of Deserialization

Graph No1: Comparison of Scalability between JSON and XML

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 4, Issue 4, April -2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2017, All rights Reserved 182

Graph No1 presents the result of the experiments. Graph No 1(a) describes the measurement of time needed for

the serialization of Java data objects to JSON/XML. From the figure, we can see that, the time needed for serializing java

data objects both increases to JSON and XML data objects. However, for JSON data, it increases much slower than that

for XML data, which means the scalability for using JSON as the data format for exchanging has better performance than

using XML. Graph No1(b) illustrates the deserializingJSON/XML data objects to java data objects. Similar to

serialization, the performance of deserializingJSON data objects to java data objects has surpassed that of deserializing

XML data objects to java data objects.

REFERENCES

[1].Drew Adams, “Oracle®Database JSON Developer’s Guide” , 12c Release 2(12.2) E85247-01,Feb 2017

[2]. Sai Srinivas Sriparasa, “Javascript and JSON Essentials”, PACKT Publishing,ISBN-10: 1783286032, January 2013,

pp.45-60.

[3]. Jeff Friesen “Java , XML and JSON”,Apress Publication, ISBN 978-1-4842-1916-4, June 2016,pg-165-177.

[4]. Chen-Hsiang (Jones) Yu “AJAX and JSON with jQuery”, CSAIL(MIT Press Bookstore), Jan 2010.

[5]. D. PENG Boas, L. CAO and W. XU.Oliveira, Using JSON forData Exchanging in Web Service Applications, Journal

of ComputationalInformation Systems 7:16, 2011, 5883-5890.

[6].Sang Shin, “Introduction to JSON”, Sun Microsystem Inc.

