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Abstract - Real-time multiprocessor systems are now commonplace. Manufacturers of traditionally 

uniprocessor embedded systems are also shifting towards multi-processor or multi-core platforms to obtain 

high computing performance. Embedded systems are the computing devices hidden inside a vast array of 

everyday products and appliances such as cell phones, toys, handheld PDAs, cameras, etc. An embedded 

system is various type of computer system or computing device that performs a dedicated function and/or is 

designed for use with a specific embedded software application. The Real Time Operating System (RTOS) 

supports applications that meet deadlines in addition to providing logically correct results. In this paper, we 

will discuss the study and analysis of the scheduling and synchronization. It also presents a system that can be 

schedule multiple tasks using global EDF scheduler and share the resource among tasks using preemptive 

synchronization algorithm. The main objective is to share resource among task sets and reduce the average 

waiting time and jitter for task. It considers global dynamic-priority preemptive multiprocessor scheduling of 

constrained-deadline periodic tasks that share resources in a non-nested manner. In the addition, a resource-

sharing protocol (i.e. priority inheritance protocol) has been discussed to decrease the blocking overhead of 

tasks, which reduces the total utilization and has the potential to reduce the number of required processors. 

Keywords - Real-Time Operating System, Embedded System, Scheduling, Synchronization. 

I. INTRODUCTION 

The Embedded Real-time operating systems are designed to satisfy the strict requirements from 

embedded applications which need real-time responses. Some embedded systems run a scaled down version 

of operating system called Real Time Operating System (RTOS). 

 Real time embedded operating system needs better response time for real-time process. They have to 

complete the tasks before the deadlines. But it is difficult to fulfill the condition as embedded system have too 

many resources and are within different types. They will damage the performance of scheduling algorithms 

which will make embedded RTOS to lose their deadlines. 

The scheduling problem consists of deciding the order of execution and also the period of execution 

of a set of tasks with certain known characteristics like periodicity and limited set of processing units, which is 

typically a single processor in embedded systems. Embedded system designers rely more on multi-processor 

or multi-core platforms to obtain high computing performance [1], [2]. A major issue in developing multi-core 

computing systems is how to utilize the available computing resources most effectively.  There are two kinds 

of constraints faced by tasks executing in an embedded real-time environment: Time Constraint and Resource 

Constraints. 

In real time world most of the tasks have a time constraint, a deadline in executing a particular job. 

The tasks are also required to have a good response time to increase the response time of the system and 

execute in a manner so that other tasks can also meet their deadlines. The other constraint that affects the 

design of an embedded real-time system is resource constraint. In embedded systems there is a limited RAM 

availability, limited CPU speed, power consumption constraint and most of other resource related constraints. 

An embedded system is designed to work optimally in spite of the resource constraint problems it has. 

Due to the above-mentioned constraints (a combination) there is an immense pressure on embedded 

operating system performance. An embedded system‟s performance in presence of constraints is highly 

correlated with how smart the scheduler is. Up until now, a lot of research has been done on developing 
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schedulers and synchronization algorithm that can meet these constraints. The paper discusses various designs 

relevant in embedded real-time world and follows them up with our analysis. 

To increase the response time of the system, the tasks are also required having a good response time. 

The embedded systems have a resource constraints as a limited RAM availability, limited CPU Speed, power-

consumption. A high performance scheduling and synchronization algorithm (i.e. smart scheduler and 

synchronizer) is required in order to make embedded operating system more efficient. 

To enforce the performance of the embedded systems and satisfy the requirement of embedded real 

time systems, the paper developed a new real time scheduling and synchronization mechanism. Now a days, 

Multi-cores are common and applications with real-time constraints are implemented upon them. To enable 

such implementation, real time scheduling algorithm must have to develop. 

Real time response is the core part of the entire embedded real time operating system. The mechanism 

presented in this paper focuses on the response time of the embedded systems. This work also considered 

several synchronization mechanisms and an optimal real-time scheduling algorithm based on multi-core 

processor, several resources sharing methods under multi-core processor for embedded real time systems. 

II. BACKGROUND 

 

  Real-Time Systems can be distinguished based on the effect of missing their deadlines. They can be 

grouped into three categories: systems that have hard deadlines, soft deadlines and firm deadlines.  

2.1 Real -Time System 

The Real-time system is one that must perform operations within rigid timing constraints i.e., 

processing must be completed within the defined constraints otherwise the system will fail. The correctness of 

real time system does not depend only on the logical correctness but also on the time it takes to produce the 

result [1]. Real-time systems have well defined, fixed time constraints. There are two main types of real-time 

systems: Hard Real-Time System (HRT), Firm or Soft Real-Time System (SRT).  

In Hard Real-Time System requires that fixed deadlines must be met otherwise disastrous/ 

catastrophic situation may arise whereas in Soft Real-Time System, missing an occasional deadline is 

undesirable, but nevertheless tolerable. System in which performance is degraded but not destroyed by failure 

to meet response time constraints is called soft real time systems.  

 

       2.1.1. Soft Real Time system 

 Deadline overruns are tolerable, but not desired. 

 There are no catastrophic consequences of missing one or more deadlines. 

 There is a cost associated to overrunning, but this cost may be abstract. 

 Often connected to Quality-of-Service. 

 

2.1.2. Hard Real Time system 

 An overrun in response time leads to potential loss of life and/or big financial damage. 

 Many of these systems are considered to be safety critical. 

 Sometimes they are “only” missioning critical, with the mission being very expensive. 

 In general there is a cost function associated with the system. 

 

2.1.3. Firm Real Time system 

 The computation is obsolete if the job is not finished on time. 

 Cost may be interpreted as loss of revenue. 

 Typical examples are forecast systems. 
 

2.2. Embedded System 

An Embedded System: It is a combination of hardware and software to perform a specific task. An 

embedded computer is frequently a computer that is implemented for a particular purpose. In contrast, an 
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average PC computer usually serves a number of purposes: checking email, surfing the internet, listening to 

music, word processing, etc... However, embedded systems usually only have a single task, or a very small 

number of related tasks that they are programmed to perform. 

2.3. Embedded Real – Time Operating System 

An Embedded Real Time System possesses the characteristics of both an embedded system and a 

real-time system. The embedded systems are resource limited, the memory capacity and processing power in 

an embedded system is limited as compared to a desktop computer and response time is one of the most 

important requirements. Some embedded systems run a scaled down version of operating system called Real 

Time Operating System (RTOS). 

The choice of an operating system is important in designing a real time system. Designing a real time 

system involves choice for proper language, task portioning and merging and assigning priorities using a real 

time scheduler to manage response time. The depending upon scheduling objectives parallelism and 

communication may be balanced. The designer of scheduling policy must be determine critical tasks and 

assign them high priorities. However, care must be taken avoid starvation, which occurs when high priority 

tasks are always ready to run. 

Time-sharing operating systems schedule tasks for efficient use of the system and may also include 

accounting software for cost allocation of processor time, mass storage, printing, and other resources. A 

scheduling algorithm is a set of rules that determines which task should be executed in any given instance. 

Due to the tasks criticality scheduling algorithms should be timely and predictable. 

 

2.3.1 Basic Requirements of Scheduler in RTOS  

 

The following are the basic requirements of Scheduler in RTOS.  

 Multitasking and Preemptable  

 Dynamic Deadline Identification  

 Predictable Synchronization  

 Sufficient Priority levels  

 Predefined latencies  

a) Multitasking and Preemptable: To support multitasks in real time applications an RTOS should be 

multitasking and preemptable. The Scheduler should be able to preempt any task in the system and give 

resource to the task that needs it.  

b) Dynamic Deadline Identification: In regulate to achieve preemption; an RTOS should be able to 

dynamically identify the task with the earliest deadline. To handle deadlines, deadline information may be 

converted to priority levels that are used for resource allocation. It is also employed for lack of a better 

solution and error less.  

c) Predictable Synchronization: Multiple threads to communicate among themselves in a timely fashion, 

predictable inter-task communication and synchronization mechanisms are required. Predictable 

synchronization requires compromise. Ability to lock or unlock resources is the ways to achieve data integrity.  

d) Sufficient Priority levels: When using prioritized task scheduling, the RTOS must have a sufficient number 

of priority levels, for effective implementation. Priority inversion occurs when a higher priority task must wait 

on a lower priority task to release a resource and turn the lower priority task is waiting upon a medium priority 

task. Two workarounds in dealing with priority inversion, namely priority inheritance and priority ceiling 

protocol, need sufficient priority levels.  

e) Predefined latencies: The timing of system calls must be defined using the following specifications:  

Task switching latency or time to save the context of a currently executing task and switch to another.  
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Interrupt latency or the time elapsed between the execution of the last instruction of the interrupted task 

and first instruction of the interrupt handler.  

Interrupt dispatch latency or the time to switch from the last instruction in the interrupt handler to the next 

task scheduled to run.  

The objective of real-time task scheduler is to guarantee the deadline of tasks in the system as much 

as possible when we consider soft real time system. To achieve this goal, vast researches on real-time task 

scheduling have been conducted. Mostly all the real time systems in existence use preemption and 

multitasking. 

2.4 Real Time Scheduling 

Given a set of tasks = {1, 2,…… n }, a set of m processors P={P1,P2,…..Pm } and a set of S 

resources R={R1,R2,…..RS}. There may exists precedence's and we are considering real-time systems, 

timing constraints are associated to each task. The goal of Real-time scheduling is to assign processors from P 

and resources from R to tasks from  in such a way that all task instances are completed under the imposed 

constraints. This problem in its general form is NP-complete. Therefore relaxed situations have to be enforced 

and/or proper heuristics have to be applied.  

Before discussing embedded real-time system schedulers, the paper provide an introduction to certain 

system concepts that carry a lot of significance in embedded real-time systems.  

 Periodic Tasks - The period of a task is the rate with which a particular task becomes ready for 

execution. Periodic tasks become ready at regular and fixed intervals. Periodic tasks are commonly found in 

applications such as avionics and process control accurate control requires continual sampling and processing 

data. 

 

 Deadlines - All real time tasks have deadline by which a particular job has to be finished. There are 

scheduling algorithms designed to allow maximum tasks to meet their deadline. 

 

 Laxity - Laxity is defined as the maximum time a task can wait and still meet the deadline. It can also 

be used as a measure of scheduling necessity. 

 

 Jitter - It is defined as the time between when a task became ready and when it actually got executed. 

For certain real time systems there is an additional constraint that all the tasks should have minimum jitter. 

 

 Schedulability - A given set of tasks is considered to be schedulable if all the tasks can meet their 

deadline. In certain on-line scheduling algorithms a new task is subject to schedulability test, wherein it is 

verified that the new task is schedulable along with the already existing tasks. If the task is not schedulable the 

task is not permitted to enter the system. 

 

 Utilization - It is the factor giving a notion of how much CPU is utilized by a given set of tasks. 

Meeting deadlines, achieving high CPU utilization with minimum resource and time utilization are 

considered as the main goals of task scheduling. 

 

2.4.1  Real Time Scheduling Paradigms 

Real time scheduling techniques can be broadly divided into two categories: Static and Dynamic. This 

classification is done on the basis of time of scheduling the processes i.e. whether the 

processes are to be scheduled on the compile time or run time. 

 Static scheduling 

In this technique, scheduling decisions are made at compile time. For scheduling, complete prior 

knowledge of task-set characteristics is required. The system's behaviour with static scheduling is 
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deterministic. Static algorithms assign all priorities at design time (before the tasks are entered into the system 

based on statically defined criterion like deadline, criticality, periodicity etc.). All assigned priorities remain 

constant for the lifetime of a task. The advantage of using static scheduling procedure is that it involves almost 

no overhead in deciding which task to schedule. Static scheduling of tasks in embedded real-time systems 

often implies a tedious iterative design process. The reason for this is the lack of flexibility and expressive 

power in existing scheduling framework, which makes it difficult to both model the system accurately and 

provide correct optimizations. This causes systems to be over constrained due to statically decided rules of 

procedures. 

 Round-robin method 

 

The simplest of static scheduling procedures is round-robin method. The tasks are checked for 

readiness in a predetermined order with ready to execute task getting a CPU slice. Each task gets checked for 

schedulability once per cycle, with scheduling time bound by execution time of other tasks. Apart from 

simplicity this method has no advantages. The major disadvantage being that urgent tasks always have to wait 

for their turns, allowing non urgent tasks to execute before the urgent tasks. Also polling tasks for 

schedulability for readiness is not a good procedure at all. This type of scheduling works well in some simple 

embedded systems where software in the loop executes quickly and the loop can execute repeatedly at a very 

rapid rate. 

 Dynamic Scheduling 

 

Scheduling decisions are made at run time by selecting one task out of the set of ready tasks. Dynamic 

schedulers are flexible but also require run time in finding a substantial schedule. System's behaviour is non-

deterministic. Dynamic algorithms assign priority at runtime, based on execution parameters of tasks. In a 

dynamic scheduling policy the tasks are dynamically chosen based on their priority dynamically, generally 

from ordered prioritized queue. The priorities can be assigned statically or dynamically based on different 

criterions like, deadline, criticality, periodicity etc. Dynamic scheduling can be preemptive or non-preemptive. 

2.4.2 Classification Based on the Number of Processes to be Scheduled 

This classification is done considering whether the scheduling is done on single processor or 

multiple processors. 

 Uniprocessor Scheduling 

If the scheduling is done on a single processor then it is known as uniprocessor scheduling. Round 

Robin, RM scheduling etc are the examples of uniprocessor scheduling algorithms. 

 Multiprocessor Scheduling 

If number of events occurring close together is high then we have to increase number of processors in 

the system. Such system is known as multiprocessor systems and scheduling techniques required to schedule a 

task on such system are known as multiprocessor scheduling algorithm. Global scheduling algorithms and 

partitioning scheduling algorithms fall under this category. 

III. RELATED WORK 

Scheduling 

J. Anderson and S. Bauruah analyzed the trade-offs involved in scheduling independent, periodic real-

time tasks on a multiprocessor. They proposed a new method for classification of scheduling algorithms for 

scheduling preemptive real time tasks on multiprocessors. Authors described some new classes of scheduling 

algorithms and also described known scheduling algorithms that fall under these classes [12].  
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J. Anderson and U. C. Devi proposed a new EDF-fm algorithm for scheduling soft real-time systems 

on multiprocessors under the condition no restriction on the total system utilization but requires per task 

utilizations to be at most one half of the processor capacity[11]. 

A. Srinivasan and J. Anderson considered the scheduling of soft real time task on multiprocessor 

using EDF algorithm with partitioning. They proved that the percentage of deadlines missed is very low for 

any threshold. Authors proved the performance (in terms of tardiness and percentage of missed deadline) of 

EPDF scales well as the number of processors increase [2].  

Many techniques are provided by researchers to provide embedded hard real-time operating systems. 

Wei Hu and T. Chen proposed real time scheduling algorithm for real time embedded system which divides 

all tasks into different sets and schedule the tasks according to the nature of the set [9]. 

T. Baker presented the technical report which reviewed hard real-time multiprocessor scheduling and 

advances in the analysis of arbitrary sporadic task systems under fixed-priority and EDF scheduling policies 

[3]. 

B. Ward and J. Herman presented several techniques for managing shared caches on multi-core 

systems within the mixed-critically scheduling framework. They implemented it on a quad-core ARM 

machine [6]. 

B. Brandenburg and J. Anderson presented suspension based real-time locking protocol for clustered 

schedulers [4]. 

B. Brandenburg, J. Anderson and J. M. Calandrino produced an extension of the LITMUS
RT

 (Linux 

Testbed for Multiprocessor Scheduling in Real-Time systems) testbed that incorporates support for 

synchronization [5]. 

A. Easwaran and B. Andersson implemented P-PCP, resource sharing protocol and developed 

schedulability analysis for global fixed priority preemptive multiprocessor scheduling under the same protocol 

and PIP [7]. 

S. Khushu and J. Simmons presented a survey of scheduling and synchronization in embedded real-

time operating systems [16]. 

C. Belwal and A. Cheng proposed utilization based necessary and sufficient scheduling condition for 

a Software Transactional Memory (STM) using lazy conflict detection [10].  

R. Jejurikar and R. Gupta proposed algorithms to compute static slowdown factor for a periodic task 

set for that they consider the effect of blocking that arises due to task synchronization. They proved that the 

computed slow down factors save on an average 25%-30% energy as compared to known methods [12]. 

K. Jeffay presented an optimal on-line algorithm for scheduling a set of sporadic tasks. The result of 

algorithm based on the integration of synchronization for access to shared resources with EDF algorithm [13]. 

N. Guan, Wang Yiand Ge yu proposed to use cache space isolation technique to avoid cache 

contention for hard real-time tasks running on multi-cores with shared caches. They proposed scheduling for 

real-time task with both timing and cache space constraints, which allow each task to use a fixed number of 

cache partitions and make sure that at any time at most one running task occupied the cache partition [8]. 

A. Shah and K. Kotecha proposed a new scheduling algorithm Ant Colony Optimization (ACO) 

algorithm for scheduling Soft real-time tasks in  uniprocessor RTOS with preemptive task sets. They observed 

that the proposed algorithm is equally optimal during underloaded condition and performs better than EDF in 

overloaded condition [15].  

M. Fan and G. Quan proposed a new semi-partitioned algorithm to schedule real-time sporadic tasks 

on multi-core system under Rate-Monotonic scheduling policy. They proposed HSP-light algorithm to 
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schedule light task set and HSP to schedule general task sets. Authors experimentally presented that the 

proposed Harmonic scheduling algorithm improved the scheduling performance as compared the other [14].  

V. Salmani, S. Taghavi and Zargar presented a modified maximum urgency scheduling algorithm 

which combines the advantages of fixed and dynamic scheduling. Modified Maximum Urgency First (MMUF) 

scheduling algorithm is as an optimization of Maximum Urgency First algorithm (MUF) [43] which is used to 

predictably schedule dynamically changing systems. The MMUF is a preemptive mixed priority algorithm for 

predictable scheduling of periodic real-time tasks. It usually has less task preemption and hence, less related 

overhead. It also leads to less failed non-critical tasks in overloaded situations in which the CPU load factor is 

greater than 100% [18]. 

 

A. Habibi and V. Salmani used a job-level dynamic and practical version of LLF which is called 

Modified Least Laxity First (MLLF) algorithm instead of the traditional LLF and have compared its 

performance with EDF algorithm from many different aspects. The success ratio has been chosen as the key 

factor for evaluation of the algorithms. Authors experimentally proved that in case of job-level dynamic 

scheduling, deadline-based algorithms have supremacy over laxity-based ones. Furthermore, in most 

conditions, global policies show a better performance than partition policies. Authors also proved that in most 

conditions the performance of global laxity-based algorithm is much better than that of its corresponding 

partition and shows a very close behavior to that of global deadline-based and thus has the potential to be 

considered for future research [19].  

 

Synchronization 

In work on uniprocessor resource sharing, the priority ceiling protocol (PCP) [42] and the stack-based 

resource allocation protocol (SRP) [29] have received much attention. For multiprocessor systems, there has 

been a growing interest in the area of resource synchronization. 

 

 Rajkumar et. al. were the first to propose a semaphore-based protocol for resource sharing on 

multiprocessors. Two variants of PCP were presented by them for systems that use partitioned, fixed priority 

scheduling. Several protocols related to multiprocessor PCP have since been proposed for systems scheduled 

under partitioned, dynamic-priority (EDF) scheduling [41, 40].  

Chen and Tripati proposed two extensions to the basic protocol, but these extensions were only valid 

for periodic (and not sporadic) task systems. Further, global critical sections were assumed to be non-

preemptable and nesting was not allowed between global and local critical sections (each can be separately 

nested however) [33]. 

 In later work, L`opez et. al. presented an implementation of SRP for partitioned EDF. However, this 

study required that tasks sharing resources be assigned to the same processor [38].  

 

Recently, Gai et. al. also presented an implementation of SRP for partitioned EDF and compared it to 

PCP. They have implemented a FIFO-queue based spin-lock for global critical sections, which has the 

potential to waste processing time (tasks can busy-wait for other tasks accessing global critical sections). 

Further, accesses to different global critical sections are not allowed to be nested, and these critical sections 

are executed in a non-preemptive manner. The latter requires modifications in the kernel to disable 

preemptions [36]. 

 

 Resource synchronization under global scheduling algorithms 

 There have been a few recent studies [34, 37, 32].Under global EDF, Devi et. al. proposed a FIFO-

queue based spinlock implementation for non-nested critical sections. They also modified the global EDF 

scheduler to enforce non-preemptive critical sections [6].  

Holman and Anderson have proposed various techniques for implementing non-nested critical 

sections under Pfair [30] global scheduling. They allow FIFO-queue based access to locked resources and 

present different techniques for handling short and long critical sections [37]. 
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 Resource synchronization under partitioned scheduling algorithms 

 Flexible Multiprocessor Locking Protocol (FMLP), proposed by Block et. al. can be used under 

partitioned EDF, global EDF, and Pfair scheduling. They handle short critical sections using FIFO-queue 

based spin-locks, and long critical sections using priority inheritance similar to PCP. Under partitioned 

scheduling, global critical sections are required to be non-preemptive. Further, nested critical sections are 

required to have group locks (separately for short and long sections), thus negating the benefits of nesting 

[32]. 

IV. SYSTEM AND TASK MODEL 

  
4.1 System And Task Model  

All the tasks are assumed to be periodic. The system knows about arrival time, period, required 

execution time and deadline of the task in priori. There are no precedence constraints on the task; they can run 

in any order relative to each other as long as their deadlines are met. A task is ready to execute as it arrives in 

the system. 

       The present work assumed that the system is not having resource contention problem. The task set is 

assumed to be preemptive. It also assumed that preemption and the scheduling algorithm incurs no overhead. 

In soft real-time systems, each task has a positive value.  

 

4.1.1 Task model 

 

The paper assumes that jobs are generated by periodic tasks and are scheduled on a multiprocessor 

platform comprised of m  identical processors. A real-time system with shared resources is specified using p 

shared resources 
1..... pR R  and   periodic tasks { ...... }lT T T .Each periodic task (1 )iT i    is 

characterized as ( , , )i i iT C D where iT   denotes the minimum inter-arrival time, iC  the worst-case execution 

time, and iD  the relative deadline. Each job of task iT requires iC  units of processing capacity within iD  

time units from its release, and this processing capacity must be supplied sequentially, i.e., the job cannot be 

scheduled on more than one processor at any given time instant. Further, any two successive jobs of this task 

must be released at least iT  time units apart. This work consider constrained-deadline tasks, i.e., i iD T . 

4.1.2   Job blocking 

 A job J  of task 
j  is said to be directly blocked at time t  on a request for resource kR , if the three 

conditions below are true:  

1) at time t , job J  is one of the m highest effective priority jobs with remaining execution time;  

2) at time t , resource kR  is locked by a job having lower base-priority than J  

3) Job J  made a request for resource kR  and this request has not been granted until time t .  

Note that the above definition of blocking does not include the case when kR is locked by a job 

having higher priority than J . This is consistent with the notion or blocking (that of being associated with 

priority-inversion) in the standard literature on uniprocessor systems. A job is said to be ready for execution 

whenever it is not directly blocked and not requesting a resource locked by a higher base- priority job.  

Blocking time is defined as the time for which a low priority task can delay the execution of high 

priority task. Blocking can lead to tasks missing deadlines. Since blocking is an important phenomenon. The 

present work will explain the concept and methods to reduce and quantify Blocking times here. A lower 

priority task blocks the execution of high priority task. This phenomenon is called priority inversion.  

 Priority Inheritance (PIP) 
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A priority inheritance mechanism is used to avoid priority inversion. In this algorithm a lower priority 

task inherits the priority of the highest priority task that gets blocked. The priority of lower task is increased 

once the higher priority task tries to lock the semaphore. The priority inheritance does solve problems of 

blocking to some extent but does not completely solve the problem of unpredictable delays. The priority 

inheritance mechanism cannot solve circular blocking which can lead to deadlocks. 

To solve these problems there is a mechanism called the priority ceiling protocol (PCP). Each 

semaphore has an associated ceiling that it attains once it locks that semaphore. When the task releases the 

semaphore the priority is reverted to old one.  

  PIP for multiprocessors 

 Under PIP, whenever a job J of task i is directly blocked on a resource kR  the effective-priority of 

the job that is holding resource kR  (say J ' of task 
j ) is raised to i  (priority inheritance). In addition to direct 

blocking, job J may also experience interference from other lower priority jobs under PIP. For instance, this 

can happen when the effective-priority of a lower priority job is raised above i  because of priority 

inheritance. On uniprocessors, PIP ensures that J only experiences direct blocking (from job J ') and lower 

priority interference from carry-in jobs; jobs that are released before J's release time. This is because any 

lower-base-priority job that is released after J cannot execute until J finishes its processing requirements. In 

other words, only those lower-base-priority jobs that hold a resource when J is released, can potentially 

interfere with, J's executions. 

 

4.1.3  Multiprocessor scheduling 

From a different standpoint, scheduling algorithms can be classified as global or partitioned. Global 

algorithms use only one queue for all the tasks in the system, while in partitioned algorithms each processor 

has its own private scheduling queue.   

 
Figure1. Types of Microprocessor Scheduling 

 

What is notable to say is that the proposed synchronization mechanism is independent from the 

specific characteristics of the scheduler, and works with dynamic priority, and under global approach. 

Therefore, in the remainder of the paper, it is assumed without loss of generality that the scheduling algorithm 

is global EDF. The present work considers global scheduling, i.e., a job is not assigned to any specific 

processor; instead jobs which have arrived but whose execution have not finished are stored in a system-wide 

ready queue shared between processors. This works focus on global dynamic priority preemptive scheduling. 

Every task has a priority assign based on EDF. We assume that priorities are unique and therefore we order 

tasks (with no loss of generality) such that for every pair or tasks ( .... )i    it holds that is task i  has higher 

priority than task j  then i j . Let the priority of a task be a positive integer such that a low number 
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signifies a high priority; i.e., priority level 1 is the highest priority level and priority level   is the lowest 

priority level.   

 

V. SYSTEM ARCHITECTURE 

 

Multicore processors are today standard building blocks in embedded computer systems but their use 

for applications with real-time requirements is non-trivial. This is because although a comprehensive toolbox 

of scheduling theories are available for a computer with a single processor; such a comprehensive toolbox is 

currently not available for multicores. Real-time applications tend to be organized as a set of concurrently 

executing tasks which need to share resources (for example data structures or I/O devices). Clearly, a 

resource-sharing protocol is a crucial component in multicore-based embedded real-time systems. 

When designing a resource access protocol for real-time applications, there are two important 

objectives: 1) at runtime, we must devise scheduling schemes and resource access protocols to reduce the 

waiting-time or blocking-time of a task; 2) off-line, we must be able to bound the waiting-time and include it 

in a schedulability analysis. 

As processes enter the system, they are put into a job queue, which contains all the processes in the 

system. as job scheduler, select process from this pool and loads them into memory for execution. Ready 

Queue contains all processes residing in main memory and are ready and waiting to execute.  

CPUScheduler, selects from among the processes (according to EDF) that are ready to execute and 

allocates the CPU to one of them. 

 

                            Figure 2. System architecture 

 

Suppose at the time of execution of a job, job issue requests for exclusive access to resources. If a 

request is not satisfied immediately, then the issuing job is said to be blocked and inserted into device queue. 

Device queue contains processes waiting for a particular I/O device. 

 The main goal of the above system architecture is to reduce the size of blocked queue. The present 

work present a resource sharing protocol based on this idea. It allows parallelism (granting requests) as much 

as possible, yet keeping the blocking time within limits. 
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5.1   Flow of system  

Table 1. Task Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

This section explains the Pre-synchronizer protocol using examples illustrated in Table 4.1. Let first 

assign priority to J1, J2 and J3 according to EDF. In this scenario job J1 has higher priority than job J2 and J2 

has higher priority than job J3, and these jobs are scheduled on 2 identical processors and there is only one 

resource i. e. „R‟. Job J1 is dependent on job J3. Further, job J2 requests resource R and job J3 also requests 

resource R.  

In Figure 3, both job J1 and J2 arrives and executing on processor P1 and processor P2, respectively. 

After some time job J3 arrives and waiting in Ready Queue. After some time interval, in between execution of 

job J1 requires job J3 and blocks. As soon as job J3 start execution on P1; it requests to lock resource R. At 

the same time job J2 also requests to lock resource R. This (Job J2) request is granted because J2 having 

higher priority and job J2 locks resource R. Then job J3 blocks because it needs R. It delays the execution of 

J3 and increase the blocking time of J1 as it is dependents on job J3. 

 
 

 Figure 3. Global Scheduling without Pre-synchronizer protocol 

 

Figure 4 shows Global Scheduling after applying pre-synchronizer protocol. Both job J1 and J2 

arrives and executing on processor P1 and processor P2, respectively. After some time job J3 arrives and 

waiting in Ready Queue. 

Task 

Name  

Arrival 

Time  

Execution 

Time  

Deadline  Dependency  Resource  Resource 

Reqd.  

J1 0 4 5 J3 ------- --------- 

J2 0 9 10 -------- R 6 

J3 2 2 12 -------- R 1 
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Figure 4. Global scheduling with Pre-synchronizer protocol 

 

After some time interval job J1 requires job J3 and blocks. As soon as job J3 start execution on P1; it 

requests to lock resource R. At the same time job J2 also requests to lock resource R. This (Job J2) request is 

granted because J2 having higher priority and job J2 locks resource R. Then job J3 blocks because it needs R. 

It delays the execution of J3 and increase the blocking time of J1 as it is dependents on job J3. The pre-

synchronizer protocol will allow J3 to lock R as job J3 requires R for less time as compare to job J2 and does 

not increase the blocking time of J1. This scenario is depicted in the figure 4.  In summary, when J3 requests 

resource R, it is granted access. So that it does not unnecessarily increasing the blocking of J1.  

The adjustment of blocking parameters in Lines 24 and 28 of Algorithm 2 ensures this property. The 

Pre-synchronizer protocol thus allows lower priority jobs to lock resource and thereby improves parallelism 

when compared to other existing approaches.  

  The latter is true because of the following reasons. The protocol allows a lower priority job to lock a 

resource. This constraint checks, for each higher priority task  , whether the maximum blocking time 
,i jCS is 

smaller than permitted blocking time of resource 
jR   k j

R  
.
 

VI.  PROPOSED WORK 

This works aims at the Synchronization in Embedded Real-Time operating systems. Real-time 

systems have a finite set of resources, and hence, have a finite processing capacity. A RTOS is a multitasking 

operating system designed to meet strict deadlines (Real-Time). Many embedded systems require software to 

respond to inputs and events within a defined short period. RTOS is designed to control an embedded system 

and deliver the real-time responsiveness and determinism required by the controlled device. Applications run 

under the control of the RTOS, which schedules allocated CPU time. 

6.1 Understanding the problem 

This section introduce about problem of priority-inversion and the idea of how this is solved in the 

context of uniprocessor scheduling. The next section then discuss that transferring this idea to multiprocessor 

scheduling can cause a limitation in efficient use of available processing capacity (platform parallelism). 

Uniprocessor systems 

Suppose task set T is scheduled on a single processor using dynamic-priority scheduling. It is assumed 

that the priority of a job is assigned according to EDF and is not affected by whether the job is holding a 

resource or not. Table 1 shows an example of three jobs where J2 and J3 request some shared resource R and 

job J1 never requests this resource. It is assumed that J1 has higher priority than J2 and J2 has higher priority 

than J3.  
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First J1 and J2 are released. J1 executes and then it requests job J3. Then J1 is blocked because of J3. 

Then J2 starts its execution and it request resource R. J2 is granted the resource R and it continues executing 

holding the resource. Before it releases R however, in the meantime, J3 is released for execution and it is 

scheduled by the dispatcher. As soon as J3 starts, it requests resource R. This request is denied since R is held 

by job J2, i.e., job J3 is blocked and cannot execute further. The job J2 executes for a long time and during its 

execution the deadline of job J1 expires. 

  In the above example, even when a higher priority job J1 is blocked by a lower priority job J3 (on a 

shared resource R held by J2), a medium priority job J2 is allowed to execute and eventually delay the 

execution of job J1. Although it is inevitable that J1 must block until J3 releases resource R, J1 must not be 

required to wait for job J2 to finish executing because J2 is not holding any resource required by J1.  

The research community has invented protocols to reduce this effect (priority-inversion), and those 

protocols give jobs that hold shared resources temporarily a higher priority. Figure 3 shows the same jobs. But 

now the priority of job J3 is promoted when it holds resource R. In this way, we can see that job J1 will meet 

its deadline, because job J2 is not allowed to execute in between. 

  There are different ways to promote the priority of a job that holds a resource; (i) the job could be 

scheduled non-preemptively or (ii) the job could be assigned the ceiling priority of the resource or (iii) the job 

could inherit (transitively) the maximum priority among all jobs that are presently blocked on the same 

resource. 

The latter approach can be combined with a test that is performed whenever any job requests a shared 

resource; a lower priority task inherits the priority of the highest priority task that gets blocked. The priority of 

lower task is increased once the higher priority task tries to lock the semaphore. 

 

Multiprocessor systems 

 

Suppose we have the same scenario as in Table 1, but now the jobs are scheduled on a multiprocessor 

platform comprised of 2 processors. Then, it is possible to schedule job J2 without having to preempt the 

execution of job J3, and therefore J2 will not interfere with the execution of job J1. This brings us to the 

question, “Is it okay to schedule a medium priority job as long as it does not preempt any resource holding 

lower priority job?” Although the answer seems positive from the previous example, this is not true in all 

cases.  

 

 Let us consider three jobs J1, J2 and J3 as in Table 1 shows an example of three jobs where J2 and 

J3 request some shared resource R and job J1 never requests this resource. It is assumed that J1 has higher 

priority than J2 and J2 has higher priority than J3. 

  

First J1 and J2 are released. J1 executes and then it requests job J3. Then J1 is blocked because of J3. 

Then J2 starts its execution and it request resource R. J2 is granted the resource R and it continues executing 

holding the resource. Before it releases R however, in the meantime, J3 is released for execution and it is 

scheduled by the dispatcher. As soon as J3 starts, it requests resource R. This request is denied since R is held 

by job J2, i.e., job J3 is blocked and cannot execute further. The job J2 executes for a long time and during its 

execution the deadline of job J1 expires. 

  In the above example, even when a higher priority job J1 is blocked on lower priority job J3, a 

medium priority job J2 is allowed to execute and eventually delay the execution of job J1. Although it is 

inevitable that J1 must block until J3 executes, J1 must not be required to wait for job J2 to finish executing 

because J1 is not holding any resource required by J2.  

An improved resource sharing scenario in which job J2 is denied access to resource R2 is illustrated in 

Figure 4. This then begs the question, “When should a request for shared resource be granted?”.A very safe 

approach would be to grant access to only one resource at a time, but this would limit parallelism. And this 

limited parallelism would imply that more work must be done at later times, which in turn can cause deadline 

misses. Another approach would be to use a PCP-like protocol (as in uniprocessors) and decide that job J2 
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should be denied resource R2, because J2 does not have higher priority than the ceilings of all locked 

resources (namely R1). But this can also unnecessarily limit parallelism resulting in the aforementioned 

performance drawback.  

 

If job J2 would have released resource R2 just prior to when job J1 requested access to the same 

resource, then it would not have affected the finishing time of job J1. Thus we can see that a resource request 

from a medium priority job can be granted if the resource is released before any other higher priority job 

requests it. Or more generally, a resource request can be granted as long as the maximum blocking time 

suffered by any higher priority job is guaranteed to be within pre-defined bounds. The next section present, 

pre-synchronizer, a resource sharing protocol based on this idea. It allows parallelism (granting requests) as 

much as possible, yet keeping the blocking time within limits.  

 

6.2 Pre-synchronizer resource sharing protocol 

The main idea:  

From the discussion in the previous section we can draw the following conclusions about the design 

of a protocol which avoids priority inversion and allows a large degree of parallel execution:  

• A priority-inheritance mechanism should be used in order to avoid priority inversion but a PCP-like 

mechanism should not be used (because it would restrict parallel execution too much). 

• If a high-priority task requests to execute but it does not request a shared resource then this task should be 

allowed to continue to execute. 

• There should be a mechanism for preventing deadlock. (This is needed since we do not use PCP.) 

• For each task-resource pair, there should be an associated counter variable. This counter specifies the 

amount of blocking that the task can tolerate to be blocked when requesting the resource. For every resource 

request, the protocol should check so that granting the request does not violate any tolerated blocking of any 

other task-resource pairs. 

• If a task is blocked for one time unit because the task requested a resource then the corresponding counter of 

this task-resource pair should be decremented by one (since the amount of tolerable blocking is one time unit 

less). In this section, the paper present a protocol based on these ideas and this protocol will avoid priority 

inversion and allow a large degree of parallel execution. 

 Firstly, notations are present that is needed. Then present the algorithm for global scheduling; it uses 

the counters as mentioned above. The paper will then show how the counters as updated and discuss subtle 

issues with the protocol. 

Notations: We use the following notations. 

• t : Denotes the current time instant. 

• iLPB : Denotes the Lower Priority Blocking for jobs of task i . The present protocol guarantees that for 

each resource access by jobs of task i , the maximum time for which this job will be blocked by lower priority 

jobs is at most iLPB . The present protocol guarantees a value of ,max{ }k lCS for iLPB , where k i and l 

ranges over resource that job of i  access. 

• ,k lMTR : Minimum Time to Request resource lR . For example, suppose jobs of k request resource lR  in 

three nesting during their execution; 1) jR  requested and then lR  with a minimum gap of 10 time units, 2) lR  

alone requested, and 3) jR  requested and then lR  with a minimum gap of 5 time units. Then, ,k lMTR in this 

case is 5. 

• l k
R   :For each task k  and each resource lR , lR


   denotes the maximum blocking (in future) that the 

currently active job of k can incur in its current resource nesting. If the job is currently not in any nesting or if 
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lR


   is currently irrelevant, then it is set to . The value is initialized to , and only updated by the present 

protocol. 

• 
iPTY : Priority of jobs of task 

i at the current time instant. 
iPTY  is initialized to i , but can be temporarily 

modified by pre-synchronizer protocol (PIP-like updates). A job of task 
i  has higher priority than a job of 

task 
j  if

i jPTY PTY , or 
i jPTY PTY and i j . 

 

6.2.1 Pre-synchronizer Protocol 

The Pre-synchronizer resource sharing protocol is given by Algorithm 1 and the update to lR


   is 

performed by Algorithm 2.  

Both these algorithms are executed at each time instant t, with Algorithm 2 being executed first. The 

present paper previously explained the Pre-synchronizer protocol using examples illustrated in Figure 4.1 

 

Algorithm 1 Global scheduling with resource sharing 

1: _ 0n assigned  

2: for each ready job J  in priority order (based on iPTY ) do 

3:  if _n assigned m  then 

4:   if J  is not requesting any resource then 

5:    Execute job J  

6:    _ _ 1n assigned n assigned   

7:   else 

8:    Let 
jR denote the resource requested. 

9:    if all resources in the nesting to which 

10:     this request belongs are unlocked then 

11:     if ,: J i jR CS


     or 

12:      i kPTY PTY  then 

13:      Execute J and set iPTY  equal to the 

14:      smallest kPTY  such that JR


    

15:      has a finite value (this update to iPTY  

16:      is reset when resource 
jR  is released). 

17:      _ _ 1n assigned n assigned   

18:     end if 

19:    end if 

20:   end if 

21:   end if 

22: end for 

 

 

Algorithm 2 Update rules for lR


    

1:  if A job of task i performs an outermost request for 

2:  resource jR  (first request of a nested access) then 

3:  j i
R   ← iLPB  

4:  if jR  is currently locked by a job of task k  and 
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5:   
k iPTY PTY then 

6:   
k iPTY PTY  (this update to 

kPTY  is reset 

7:   when resource 
jR  is released). 

8:  end if 

9:  ,l i li
R MTR   for each non-outermost resource 

lR  

10:  in this nested access. 

11:  for each non-outermost resource lR  in this 

12:   nested access do 

13:   if lR  is currently locked by a job of task k  and 

14:    k iPTY PTY  then 

15:     k iPTY PTY  (this update to kPTY is reset 

16:     when resource lR  is released). 

17:   end if 

18:  end for 

19: end if 

20:  if a job of task i  is granted access to a resource 
jR  (in response 

to an earlier request) then 

21:   j i
R     

22: end if 

23: if A job of task i  is blocked in the interval ( 1, ]t t then 

24:  1l li i
R R        , for all . . . l i

l s t R      

25: else 

26:  if A job of task 
j  is directly blocking some job in the 

27:   interval ( 1, ]t t then 

28:  1l li i
R R        , for all . . . l i

l s t R      

29:  end if 

30: end if 

The Pre-synchronizer protocol thus allows lower priority jobs to lock resources even when dependent 

resources are locked by higher priority jobs, and thereby improves parallelism when compared to other 

existing approaches. It can be shown that the Pre-synchronizer protocol prevents deadlocks (due to check in 

Line 9 of Algorithm 1), and ensures that the maximum lower priority blocking suffered by any job of task i  

is iLPB . The latter is true because of the following reasons. 

• The protocol allows a lower priority job to lock a resource if it does not violate the blocking constraint in 

Line 11 of Algorithm 1. This constraint checks, for each higher priority task k , whether the maximum 

blocking time ,i jCS is smaller than permitted blocking time of resource jR   k j
R   . 

VII. EXPERIMENTAL RESULTS 

 

7.1 Results 

Figure 5 shows initialization of the tasks with different parameters like A i.e. Arrival Time, B i.e. 

Burst Time, D i.e. Deadline and R i.e. Resource required in particular clock cycle. For ex. In above figure, 

Processor1 and Processor2 are two processors and processes initialized with p4: A=2, B=5,D=6 and R=3-5 
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means Process 4 arrives at 2 clock cycle, 5 is burst time for process 4, 6 is deadline(Relative) for process. And 

R indicates it require resource from 3 clock cycle to 5 clock cycle. 

 
Figure 5. Process Initialization and Processor 

 

 
Figure 6.  Allocation of Processes  

 

Figure 6 shows simulation for allocation of processes to Job Queue and then Long Term Schedular 

allocates that processes from job queue to Ready Queue. Then CPUSchedular sort ready queue according to 

EDF and allocate processor to processes for execution. 
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Figure 7.  Execution of task on multiprocessor 

 

In Figure 7, „*‟ indicates execution of process and „R‟ indicates resource required in particular clock 

cycle.   

 

 
Figure 8.  Allocation of Resource 

 

 In Figure 8, shows allocation of resource to process which is indicated using „#‟. „Starttime‟ indicates 

starting time of execution of particular process on processor. And „Endtime‟ indicates end of execution of 

process. Firstly, process from ready queue is allocated to processor which is free (Bydefault, at first time 

Processor 1). 
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If Processor 1 is busy then next process allocate to Processor 2. The present work assumed scheduling 

is preemptive .So in between execution of current process any high priority (earliest deadline) process arrives; 

initial process gets preempted by newly arrived process and adds to ready queue. In between execution, if 

process requires resource then it adds to Resource Queue and resource get allocate resource according to Pre-

synchronizer. 

VIII.  CONCLUSION 

 

The paper has taken an initial step towards developing a generic resource-sharing framework for 

periodic real-time tasks scheduled on a multiprocessor under global EDF. The present work has discussed that 

there is a tradeoff between blocking and parallelism, and work has proposed the Pre-synchronizer protocol 

which allows as much parallelism as possible, keeping blocking within limits. 

 We may note that we are not the first ones to propose that a request for a resource should undergo a 

check, to calculate the time when the resource will be released. In fact, SIRAP [1] (a protocol for hierarchical 

scheduling) used such a test to decide if a job which requests a resource will finish execution before its budget 

expires, and if the answer is no then the request is denied.  

Although the Pre-synchronizer protocol addressed some issues concerning the efficient use of 

parallelism in task executions, some open questions still remain. 

 “Moving from uniprocessors to multiprocessors, whether it is still relevant to   treat processors in a special 

manner when compared to other shared resources?”.  

 

In multiprocessors, there is a very clear trade-off between mutually exclusive access to shared 

resources and ability to exploit processing parallelism. Then, it would be interesting to consider processors as 

just another shared resource (although preemptable), and integrate their scheduling directly into the resource 

sharing protocol.  

 

  “How to integrate the loss of parallelism due to shared resources in schedulability analysis?” 

 

  There are two factors leading to loss of parallelism; blocking from lower priority jobs and blocking 

from higher priority jobs. Higher priority blocking arises when processors are idle because higher priority jobs 

have locked resources required by lower priority jobs. The former is accounted for in the blocking factor (LPB 

in our case). However, accounting for the latter is still an open problem. 

 

IX. FUTURE SCOPE 

 

In the future we plan to work further on the resource management issues on multi-core platforms and 

we will investigate the possibility of improvement of the existing protocols as well as development of new 

approaches. One future work will be to extend our global algorithm to other synchronization protocols, e.g, 

Multiple Stack Resource Protocol (MSRP), Flexible Multiprocessor Locking Protocol (FMLP) under 

partitioned scheduling.  

This work has focused on resource management on multi-cores where resources are protected by 

semaphores. In a fault-tolerant system, applications have to be protected from other applications that may 

malfunction. If the applications are allowed to access shared memory, a malfunctioning application may 

corrupt parts of the memory that is also shared by other applications. To avoid this, the applications are 

isolated such that each of them can only access its dedicated portion of memory. However, in this case using 

resource sharing protocols that rely on shared memory (semaphores) is not feasible. In the future, we aim to 

work on resource management among real-time applications on multi-cores by means of message passing. 
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