
International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 1

Synchronization in Embedded Real-Time Operating Systems

Miss. Rani S. Lande
1
, Dr.

M. S. Ali

2

1Department of Computer Science and Engineering, Prof. Ram Meghe College of Engineering &

Management, Email id: lande.rani@gmail.com
2Department of Computer Science and Engineering, Prof. Ram Meghe College of Engineering &

Management, Email id: softalis@hotmail.com

Abstract - Real-time multiprocessor systems are now commonplace. Manufacturers of traditionally

uniprocessor embedded systems are also shifting towards multi-processor or multi-core platforms to obtain

high computing performance. Embedded systems are the computing devices hidden inside a vast array of

everyday products and appliances such as cell phones, toys, handheld PDAs, cameras, etc. An embedded

system is various type of computer system or computing device that performs a dedicated function and/or is

designed for use with a specific embedded software application. The Real Time Operating System (RTOS)

supports applications that meet deadlines in addition to providing logically correct results. In this paper, we

will discuss the study and analysis of the scheduling and synchronization. It also presents a system that can be

schedule multiple tasks using global EDF scheduler and share the resource among tasks using preemptive

synchronization algorithm. The main objective is to share resource among task sets and reduce the average

waiting time and jitter for task. It considers global dynamic-priority preemptive multiprocessor scheduling of

constrained-deadline periodic tasks that share resources in a non-nested manner. In the addition, a resource-

sharing protocol (i.e. priority inheritance protocol) has been discussed to decrease the blocking overhead of

tasks, which reduces the total utilization and has the potential to reduce the number of required processors.

Keywords - Real-Time Operating System, Embedded System, Scheduling, Synchronization.

I. INTRODUCTION

The Embedded Real-time operating systems are designed to satisfy the strict requirements from

embedded applications which need real-time responses. Some embedded systems run a scaled down version

of operating system called Real Time Operating System (RTOS).

 Real time embedded operating system needs better response time for real-time process. They have to

complete the tasks before the deadlines. But it is difficult to fulfill the condition as embedded system have too

many resources and are within different types. They will damage the performance of scheduling algorithms

which will make embedded RTOS to lose their deadlines.

The scheduling problem consists of deciding the order of execution and also the period of execution

of a set of tasks with certain known characteristics like periodicity and limited set of processing units, which is

typically a single processor in embedded systems. Embedded system designers rely more on multi-processor

or multi-core platforms to obtain high computing performance [1], [2]. A major issue in developing multi-core

computing systems is how to utilize the available computing resources most effectively. There are two kinds

of constraints faced by tasks executing in an embedded real-time environment: Time Constraint and Resource

Constraints.

In real time world most of the tasks have a time constraint, a deadline in executing a particular job.

The tasks are also required to have a good response time to increase the response time of the system and

execute in a manner so that other tasks can also meet their deadlines. The other constraint that affects the

design of an embedded real-time system is resource constraint. In embedded systems there is a limited RAM

availability, limited CPU speed, power consumption constraint and most of other resource related constraints.

An embedded system is designed to work optimally in spite of the resource constraint problems it has.

Due to the above-mentioned constraints (a combination) there is an immense pressure on embedded

operating system performance. An embedded system‟s performance in presence of constraints is highly

correlated with how smart the scheduler is. Up until now, a lot of research has been done on developing

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 2

schedulers and synchronization algorithm that can meet these constraints. The paper discusses various designs

relevant in embedded real-time world and follows them up with our analysis.

To increase the response time of the system, the tasks are also required having a good response time.

The embedded systems have a resource constraints as a limited RAM availability, limited CPU Speed, power-

consumption. A high performance scheduling and synchronization algorithm (i.e. smart scheduler and

synchronizer) is required in order to make embedded operating system more efficient.

To enforce the performance of the embedded systems and satisfy the requirement of embedded real

time systems, the paper developed a new real time scheduling and synchronization mechanism. Now a days,

Multi-cores are common and applications with real-time constraints are implemented upon them. To enable

such implementation, real time scheduling algorithm must have to develop.

Real time response is the core part of the entire embedded real time operating system. The mechanism

presented in this paper focuses on the response time of the embedded systems. This work also considered

several synchronization mechanisms and an optimal real-time scheduling algorithm based on multi-core

processor, several resources sharing methods under multi-core processor for embedded real time systems.

II. BACKGROUND

 Real-Time Systems can be distinguished based on the effect of missing their deadlines. They can be

grouped into three categories: systems that have hard deadlines, soft deadlines and firm deadlines.

2.1 Real -Time System

The Real-time system is one that must perform operations within rigid timing constraints i.e.,

processing must be completed within the defined constraints otherwise the system will fail. The correctness of

real time system does not depend only on the logical correctness but also on the time it takes to produce the

result [1]. Real-time systems have well defined, fixed time constraints. There are two main types of real-time

systems: Hard Real-Time System (HRT), Firm or Soft Real-Time System (SRT).

In Hard Real-Time System requires that fixed deadlines must be met otherwise disastrous/

catastrophic situation may arise whereas in Soft Real-Time System, missing an occasional deadline is

undesirable, but nevertheless tolerable. System in which performance is degraded but not destroyed by failure

to meet response time constraints is called soft real time systems.

 2.1.1. Soft Real Time system

 Deadline overruns are tolerable, but not desired.

 There are no catastrophic consequences of missing one or more deadlines.

 There is a cost associated to overrunning, but this cost may be abstract.

 Often connected to Quality-of-Service.

2.1.2. Hard Real Time system

 An overrun in response time leads to potential loss of life and/or big financial damage.

 Many of these systems are considered to be safety critical.

 Sometimes they are “only” missioning critical, with the mission being very expensive.

 In general there is a cost function associated with the system.

2.1.3. Firm Real Time system

 The computation is obsolete if the job is not finished on time.

 Cost may be interpreted as loss of revenue.

 Typical examples are forecast systems.

2.2. Embedded System

An Embedded System: It is a combination of hardware and software to perform a specific task. An

embedded computer is frequently a computer that is implemented for a particular purpose. In contrast, an

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 3

average PC computer usually serves a number of purposes: checking email, surfing the internet, listening to

music, word processing, etc... However, embedded systems usually only have a single task, or a very small

number of related tasks that they are programmed to perform.

2.3. Embedded Real – Time Operating System

An Embedded Real Time System possesses the characteristics of both an embedded system and a

real-time system. The embedded systems are resource limited, the memory capacity and processing power in

an embedded system is limited as compared to a desktop computer and response time is one of the most

important requirements. Some embedded systems run a scaled down version of operating system called Real

Time Operating System (RTOS).

The choice of an operating system is important in designing a real time system. Designing a real time

system involves choice for proper language, task portioning and merging and assigning priorities using a real

time scheduler to manage response time. The depending upon scheduling objectives parallelism and

communication may be balanced. The designer of scheduling policy must be determine critical tasks and

assign them high priorities. However, care must be taken avoid starvation, which occurs when high priority

tasks are always ready to run.

Time-sharing operating systems schedule tasks for efficient use of the system and may also include

accounting software for cost allocation of processor time, mass storage, printing, and other resources. A

scheduling algorithm is a set of rules that determines which task should be executed in any given instance.

Due to the tasks criticality scheduling algorithms should be timely and predictable.

2.3.1 Basic Requirements of Scheduler in RTOS

The following are the basic requirements of Scheduler in RTOS.

 Multitasking and Preemptable

 Dynamic Deadline Identification

 Predictable Synchronization

 Sufficient Priority levels

 Predefined latencies

a) Multitasking and Preemptable: To support multitasks in real time applications an RTOS should be

multitasking and preemptable. The Scheduler should be able to preempt any task in the system and give

resource to the task that needs it.

b) Dynamic Deadline Identification: In regulate to achieve preemption; an RTOS should be able to

dynamically identify the task with the earliest deadline. To handle deadlines, deadline information may be

converted to priority levels that are used for resource allocation. It is also employed for lack of a better

solution and error less.

c) Predictable Synchronization: Multiple threads to communicate among themselves in a timely fashion,

predictable inter-task communication and synchronization mechanisms are required. Predictable

synchronization requires compromise. Ability to lock or unlock resources is the ways to achieve data integrity.

d) Sufficient Priority levels: When using prioritized task scheduling, the RTOS must have a sufficient number

of priority levels, for effective implementation. Priority inversion occurs when a higher priority task must wait

on a lower priority task to release a resource and turn the lower priority task is waiting upon a medium priority

task. Two workarounds in dealing with priority inversion, namely priority inheritance and priority ceiling

protocol, need sufficient priority levels.

e) Predefined latencies: The timing of system calls must be defined using the following specifications:

Task switching latency or time to save the context of a currently executing task and switch to another.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 4

Interrupt latency or the time elapsed between the execution of the last instruction of the interrupted task

and first instruction of the interrupt handler.

Interrupt dispatch latency or the time to switch from the last instruction in the interrupt handler to the next

task scheduled to run.

The objective of real-time task scheduler is to guarantee the deadline of tasks in the system as much

as possible when we consider soft real time system. To achieve this goal, vast researches on real-time task

scheduling have been conducted. Mostly all the real time systems in existence use preemption and

multitasking.

2.4 Real Time Scheduling

Given a set of tasks = {1, 2,…… n }, a set of m processors P={P1,P2,…..Pm } and a set of S

resources R={R1,R2,…..RS}. There may exists precedence's and we are considering real-time systems,

timing constraints are associated to each task. The goal of Real-time scheduling is to assign processors from P

and resources from R to tasks from  in such a way that all task instances are completed under the imposed

constraints. This problem in its general form is NP-complete. Therefore relaxed situations have to be enforced

and/or proper heuristics have to be applied.

Before discussing embedded real-time system schedulers, the paper provide an introduction to certain

system concepts that carry a lot of significance in embedded real-time systems.

 Periodic Tasks - The period of a task is the rate with which a particular task becomes ready for

execution. Periodic tasks become ready at regular and fixed intervals. Periodic tasks are commonly found in

applications such as avionics and process control accurate control requires continual sampling and processing

data.

 Deadlines - All real time tasks have deadline by which a particular job has to be finished. There are

scheduling algorithms designed to allow maximum tasks to meet their deadline.

 Laxity - Laxity is defined as the maximum time a task can wait and still meet the deadline. It can also

be used as a measure of scheduling necessity.

 Jitter - It is defined as the time between when a task became ready and when it actually got executed.

For certain real time systems there is an additional constraint that all the tasks should have minimum jitter.

 Schedulability - A given set of tasks is considered to be schedulable if all the tasks can meet their

deadline. In certain on-line scheduling algorithms a new task is subject to schedulability test, wherein it is

verified that the new task is schedulable along with the already existing tasks. If the task is not schedulable the

task is not permitted to enter the system.

 Utilization - It is the factor giving a notion of how much CPU is utilized by a given set of tasks.

Meeting deadlines, achieving high CPU utilization with minimum resource and time utilization are

considered as the main goals of task scheduling.

2.4.1 Real Time Scheduling Paradigms

Real time scheduling techniques can be broadly divided into two categories: Static and Dynamic. This

classification is done on the basis of time of scheduling the processes i.e. whether the

processes are to be scheduled on the compile time or run time.

 Static scheduling

In this technique, scheduling decisions are made at compile time. For scheduling, complete prior

knowledge of task-set characteristics is required. The system's behaviour with static scheduling is

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 5

deterministic. Static algorithms assign all priorities at design time (before the tasks are entered into the system

based on statically defined criterion like deadline, criticality, periodicity etc.). All assigned priorities remain

constant for the lifetime of a task. The advantage of using static scheduling procedure is that it involves almost

no overhead in deciding which task to schedule. Static scheduling of tasks in embedded real-time systems

often implies a tedious iterative design process. The reason for this is the lack of flexibility and expressive

power in existing scheduling framework, which makes it difficult to both model the system accurately and

provide correct optimizations. This causes systems to be over constrained due to statically decided rules of

procedures.

 Round-robin method

The simplest of static scheduling procedures is round-robin method. The tasks are checked for

readiness in a predetermined order with ready to execute task getting a CPU slice. Each task gets checked for

schedulability once per cycle, with scheduling time bound by execution time of other tasks. Apart from

simplicity this method has no advantages. The major disadvantage being that urgent tasks always have to wait

for their turns, allowing non urgent tasks to execute before the urgent tasks. Also polling tasks for

schedulability for readiness is not a good procedure at all. This type of scheduling works well in some simple

embedded systems where software in the loop executes quickly and the loop can execute repeatedly at a very

rapid rate.

 Dynamic Scheduling

Scheduling decisions are made at run time by selecting one task out of the set of ready tasks. Dynamic

schedulers are flexible but also require run time in finding a substantial schedule. System's behaviour is non-

deterministic. Dynamic algorithms assign priority at runtime, based on execution parameters of tasks. In a

dynamic scheduling policy the tasks are dynamically chosen based on their priority dynamically, generally

from ordered prioritized queue. The priorities can be assigned statically or dynamically based on different

criterions like, deadline, criticality, periodicity etc. Dynamic scheduling can be preemptive or non-preemptive.

2.4.2 Classification Based on the Number of Processes to be Scheduled

This classification is done considering whether the scheduling is done on single processor or

multiple processors.

 Uniprocessor Scheduling

If the scheduling is done on a single processor then it is known as uniprocessor scheduling. Round

Robin, RM scheduling etc are the examples of uniprocessor scheduling algorithms.

 Multiprocessor Scheduling

If number of events occurring close together is high then we have to increase number of processors in

the system. Such system is known as multiprocessor systems and scheduling techniques required to schedule a

task on such system are known as multiprocessor scheduling algorithm. Global scheduling algorithms and

partitioning scheduling algorithms fall under this category.

III. RELATED WORK

Scheduling

J. Anderson and S. Bauruah analyzed the trade-offs involved in scheduling independent, periodic real-

time tasks on a multiprocessor. They proposed a new method for classification of scheduling algorithms for

scheduling preemptive real time tasks on multiprocessors. Authors described some new classes of scheduling

algorithms and also described known scheduling algorithms that fall under these classes [12].

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 6

J. Anderson and U. C. Devi proposed a new EDF-fm algorithm for scheduling soft real-time systems

on multiprocessors under the condition no restriction on the total system utilization but requires per task

utilizations to be at most one half of the processor capacity[11].

A. Srinivasan and J. Anderson considered the scheduling of soft real time task on multiprocessor

using EDF algorithm with partitioning. They proved that the percentage of deadlines missed is very low for

any threshold. Authors proved the performance (in terms of tardiness and percentage of missed deadline) of

EPDF scales well as the number of processors increase [2].

Many techniques are provided by researchers to provide embedded hard real-time operating systems.

Wei Hu and T. Chen proposed real time scheduling algorithm for real time embedded system which divides

all tasks into different sets and schedule the tasks according to the nature of the set [9].

T. Baker presented the technical report which reviewed hard real-time multiprocessor scheduling and

advances in the analysis of arbitrary sporadic task systems under fixed-priority and EDF scheduling policies

[3].

B. Ward and J. Herman presented several techniques for managing shared caches on multi-core

systems within the mixed-critically scheduling framework. They implemented it on a quad-core ARM

machine [6].

B. Brandenburg and J. Anderson presented suspension based real-time locking protocol for clustered

schedulers [4].

B. Brandenburg, J. Anderson and J. M. Calandrino produced an extension of the LITMUS
RT

 (Linux

Testbed for Multiprocessor Scheduling in Real-Time systems) testbed that incorporates support for

synchronization [5].

A. Easwaran and B. Andersson implemented P-PCP, resource sharing protocol and developed

schedulability analysis for global fixed priority preemptive multiprocessor scheduling under the same protocol

and PIP [7].

S. Khushu and J. Simmons presented a survey of scheduling and synchronization in embedded real-

time operating systems [16].

C. Belwal and A. Cheng proposed utilization based necessary and sufficient scheduling condition for

a Software Transactional Memory (STM) using lazy conflict detection [10].

R. Jejurikar and R. Gupta proposed algorithms to compute static slowdown factor for a periodic task

set for that they consider the effect of blocking that arises due to task synchronization. They proved that the

computed slow down factors save on an average 25%-30% energy as compared to known methods [12].

K. Jeffay presented an optimal on-line algorithm for scheduling a set of sporadic tasks. The result of

algorithm based on the integration of synchronization for access to shared resources with EDF algorithm [13].

N. Guan, Wang Yiand Ge yu proposed to use cache space isolation technique to avoid cache

contention for hard real-time tasks running on multi-cores with shared caches. They proposed scheduling for

real-time task with both timing and cache space constraints, which allow each task to use a fixed number of

cache partitions and make sure that at any time at most one running task occupied the cache partition [8].

A. Shah and K. Kotecha proposed a new scheduling algorithm Ant Colony Optimization (ACO)

algorithm for scheduling Soft real-time tasks in uniprocessor RTOS with preemptive task sets. They observed

that the proposed algorithm is equally optimal during underloaded condition and performs better than EDF in

overloaded condition [15].

M. Fan and G. Quan proposed a new semi-partitioned algorithm to schedule real-time sporadic tasks

on multi-core system under Rate-Monotonic scheduling policy. They proposed HSP-light algorithm to

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 7

schedule light task set and HSP to schedule general task sets. Authors experimentally presented that the

proposed Harmonic scheduling algorithm improved the scheduling performance as compared the other [14].

V. Salmani, S. Taghavi and Zargar presented a modified maximum urgency scheduling algorithm

which combines the advantages of fixed and dynamic scheduling. Modified Maximum Urgency First (MMUF)

scheduling algorithm is as an optimization of Maximum Urgency First algorithm (MUF) [43] which is used to

predictably schedule dynamically changing systems. The MMUF is a preemptive mixed priority algorithm for

predictable scheduling of periodic real-time tasks. It usually has less task preemption and hence, less related

overhead. It also leads to less failed non-critical tasks in overloaded situations in which the CPU load factor is

greater than 100% [18].

A. Habibi and V. Salmani used a job-level dynamic and practical version of LLF which is called

Modified Least Laxity First (MLLF) algorithm instead of the traditional LLF and have compared its

performance with EDF algorithm from many different aspects. The success ratio has been chosen as the key

factor for evaluation of the algorithms. Authors experimentally proved that in case of job-level dynamic

scheduling, deadline-based algorithms have supremacy over laxity-based ones. Furthermore, in most

conditions, global policies show a better performance than partition policies. Authors also proved that in most

conditions the performance of global laxity-based algorithm is much better than that of its corresponding

partition and shows a very close behavior to that of global deadline-based and thus has the potential to be

considered for future research [19].

Synchronization

In work on uniprocessor resource sharing, the priority ceiling protocol (PCP) [42] and the stack-based

resource allocation protocol (SRP) [29] have received much attention. For multiprocessor systems, there has

been a growing interest in the area of resource synchronization.

 Rajkumar et. al. were the first to propose a semaphore-based protocol for resource sharing on

multiprocessors. Two variants of PCP were presented by them for systems that use partitioned, fixed priority

scheduling. Several protocols related to multiprocessor PCP have since been proposed for systems scheduled

under partitioned, dynamic-priority (EDF) scheduling [41, 40].

Chen and Tripati proposed two extensions to the basic protocol, but these extensions were only valid

for periodic (and not sporadic) task systems. Further, global critical sections were assumed to be non-

preemptable and nesting was not allowed between global and local critical sections (each can be separately

nested however) [33].

 In later work, L`opez et. al. presented an implementation of SRP for partitioned EDF. However, this

study required that tasks sharing resources be assigned to the same processor [38].

Recently, Gai et. al. also presented an implementation of SRP for partitioned EDF and compared it to

PCP. They have implemented a FIFO-queue based spin-lock for global critical sections, which has the

potential to waste processing time (tasks can busy-wait for other tasks accessing global critical sections).

Further, accesses to different global critical sections are not allowed to be nested, and these critical sections

are executed in a non-preemptive manner. The latter requires modifications in the kernel to disable

preemptions [36].

 Resource synchronization under global scheduling algorithms

 There have been a few recent studies [34, 37, 32].Under global EDF, Devi et. al. proposed a FIFO-

queue based spinlock implementation for non-nested critical sections. They also modified the global EDF

scheduler to enforce non-preemptive critical sections [6].

Holman and Anderson have proposed various techniques for implementing non-nested critical

sections under Pfair [30] global scheduling. They allow FIFO-queue based access to locked resources and

present different techniques for handling short and long critical sections [37].

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 8

 Resource synchronization under partitioned scheduling algorithms

 Flexible Multiprocessor Locking Protocol (FMLP), proposed by Block et. al. can be used under

partitioned EDF, global EDF, and Pfair scheduling. They handle short critical sections using FIFO-queue

based spin-locks, and long critical sections using priority inheritance similar to PCP. Under partitioned

scheduling, global critical sections are required to be non-preemptive. Further, nested critical sections are

required to have group locks (separately for short and long sections), thus negating the benefits of nesting

[32].

IV. SYSTEM AND TASK MODEL

4.1 System And Task Model

All the tasks are assumed to be periodic. The system knows about arrival time, period, required

execution time and deadline of the task in priori. There are no precedence constraints on the task; they can run

in any order relative to each other as long as their deadlines are met. A task is ready to execute as it arrives in

the system.

 The present work assumed that the system is not having resource contention problem. The task set is

assumed to be preemptive. It also assumed that preemption and the scheduling algorithm incurs no overhead.

In soft real-time systems, each task has a positive value.

4.1.1 Task model

The paper assumes that jobs are generated by periodic tasks and are scheduled on a multiprocessor

platform comprised of m identical processors. A real-time system with shared resources is specified using p

shared resources
1..... pR R and  periodic tasks { }lT T T .Each periodic task (1)iT i   is

characterized as (, ,)i i iT C D where iT denotes the minimum inter-arrival time, iC the worst-case execution

time, and iD the relative deadline. Each job of task iT requires iC units of processing capacity within iD

time units from its release, and this processing capacity must be supplied sequentially, i.e., the job cannot be

scheduled on more than one processor at any given time instant. Further, any two successive jobs of this task

must be released at least iT time units apart. This work consider constrained-deadline tasks, i.e., i iD T .

4.1.2 Job blocking

 A job J of task
j is said to be directly blocked at time t on a request for resource kR , if the three

conditions below are true:

1) at time t , job J is one of the m highest effective priority jobs with remaining execution time;

2) at time t , resource kR is locked by a job having lower base-priority than J

3) Job J made a request for resource kR and this request has not been granted until time t .

Note that the above definition of blocking does not include the case when kR is locked by a job

having higher priority than J . This is consistent with the notion or blocking (that of being associated with

priority-inversion) in the standard literature on uniprocessor systems. A job is said to be ready for execution

whenever it is not directly blocked and not requesting a resource locked by a higher base- priority job.

Blocking time is defined as the time for which a low priority task can delay the execution of high

priority task. Blocking can lead to tasks missing deadlines. Since blocking is an important phenomenon. The

present work will explain the concept and methods to reduce and quantify Blocking times here. A lower

priority task blocks the execution of high priority task. This phenomenon is called priority inversion.

 Priority Inheritance (PIP)

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 9

A priority inheritance mechanism is used to avoid priority inversion. In this algorithm a lower priority

task inherits the priority of the highest priority task that gets blocked. The priority of lower task is increased

once the higher priority task tries to lock the semaphore. The priority inheritance does solve problems of

blocking to some extent but does not completely solve the problem of unpredictable delays. The priority

inheritance mechanism cannot solve circular blocking which can lead to deadlocks.

To solve these problems there is a mechanism called the priority ceiling protocol (PCP). Each

semaphore has an associated ceiling that it attains once it locks that semaphore. When the task releases the

semaphore the priority is reverted to old one.

 PIP for multiprocessors

 Under PIP, whenever a job J of task i is directly blocked on a resource kR the effective-priority of

the job that is holding resource kR (say J ' of task
j) is raised to i (priority inheritance). In addition to direct

blocking, job J may also experience interference from other lower priority jobs under PIP. For instance, this

can happen when the effective-priority of a lower priority job is raised above i because of priority

inheritance. On uniprocessors, PIP ensures that J only experiences direct blocking (from job J ') and lower

priority interference from carry-in jobs; jobs that are released before J's release time. This is because any

lower-base-priority job that is released after J cannot execute until J finishes its processing requirements. In

other words, only those lower-base-priority jobs that hold a resource when J is released, can potentially

interfere with, J's executions.

4.1.3 Multiprocessor scheduling

From a different standpoint, scheduling algorithms can be classified as global or partitioned. Global

algorithms use only one queue for all the tasks in the system, while in partitioned algorithms each processor

has its own private scheduling queue.

Figure1. Types of Microprocessor Scheduling

What is notable to say is that the proposed synchronization mechanism is independent from the

specific characteristics of the scheduler, and works with dynamic priority, and under global approach.

Therefore, in the remainder of the paper, it is assumed without loss of generality that the scheduling algorithm

is global EDF. The present work considers global scheduling, i.e., a job is not assigned to any specific

processor; instead jobs which have arrived but whose execution have not finished are stored in a system-wide

ready queue shared between processors. This works focus on global dynamic priority preemptive scheduling.

Every task has a priority assign based on EDF. We assume that priorities are unique and therefore we order

tasks (with no loss of generality) such that for every pair or tasks (....)i   it holds that is task i has higher

priority than task j then i j . Let the priority of a task be a positive integer such that a low number

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 10

signifies a high priority; i.e., priority level 1 is the highest priority level and priority level  is the lowest

priority level.

V. SYSTEM ARCHITECTURE

Multicore processors are today standard building blocks in embedded computer systems but their use

for applications with real-time requirements is non-trivial. This is because although a comprehensive toolbox

of scheduling theories are available for a computer with a single processor; such a comprehensive toolbox is

currently not available for multicores. Real-time applications tend to be organized as a set of concurrently

executing tasks which need to share resources (for example data structures or I/O devices). Clearly, a

resource-sharing protocol is a crucial component in multicore-based embedded real-time systems.

When designing a resource access protocol for real-time applications, there are two important

objectives: 1) at runtime, we must devise scheduling schemes and resource access protocols to reduce the

waiting-time or blocking-time of a task; 2) off-line, we must be able to bound the waiting-time and include it

in a schedulability analysis.

As processes enter the system, they are put into a job queue, which contains all the processes in the

system. as job scheduler, select process from this pool and loads them into memory for execution. Ready

Queue contains all processes residing in main memory and are ready and waiting to execute.

CPUScheduler, selects from among the processes (according to EDF) that are ready to execute and

allocates the CPU to one of them.

 Figure 2. System architecture

Suppose at the time of execution of a job, job issue requests for exclusive access to resources. If a

request is not satisfied immediately, then the issuing job is said to be blocked and inserted into device queue.

Device queue contains processes waiting for a particular I/O device.

 The main goal of the above system architecture is to reduce the size of blocked queue. The present

work present a resource sharing protocol based on this idea. It allows parallelism (granting requests) as much

as possible, yet keeping the blocking time within limits.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 11

5.1 Flow of system

Table 1. Task Model

This section explains the Pre-synchronizer protocol using examples illustrated in Table 4.1. Let first

assign priority to J1, J2 and J3 according to EDF. In this scenario job J1 has higher priority than job J2 and J2

has higher priority than job J3, and these jobs are scheduled on 2 identical processors and there is only one

resource i. e. „R‟. Job J1 is dependent on job J3. Further, job J2 requests resource R and job J3 also requests

resource R.

In Figure 3, both job J1 and J2 arrives and executing on processor P1 and processor P2, respectively.

After some time job J3 arrives and waiting in Ready Queue. After some time interval, in between execution of

job J1 requires job J3 and blocks. As soon as job J3 start execution on P1; it requests to lock resource R. At

the same time job J2 also requests to lock resource R. This (Job J2) request is granted because J2 having

higher priority and job J2 locks resource R. Then job J3 blocks because it needs R. It delays the execution of

J3 and increase the blocking time of J1 as it is dependents on job J3.

 Figure 3. Global Scheduling without Pre-synchronizer protocol

Figure 4 shows Global Scheduling after applying pre-synchronizer protocol. Both job J1 and J2

arrives and executing on processor P1 and processor P2, respectively. After some time job J3 arrives and

waiting in Ready Queue.

Task

Name

Arrival

Time

Execution

Time

Deadline Dependency Resource Resource

Reqd.

J1 0 4 5 J3 ------- ---------

J2 0 9 10 -------- R 6

J3 2 2 12 -------- R 1

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 12

Figure 4. Global scheduling with Pre-synchronizer protocol

After some time interval job J1 requires job J3 and blocks. As soon as job J3 start execution on P1; it

requests to lock resource R. At the same time job J2 also requests to lock resource R. This (Job J2) request is

granted because J2 having higher priority and job J2 locks resource R. Then job J3 blocks because it needs R.

It delays the execution of J3 and increase the blocking time of J1 as it is dependents on job J3. The pre-

synchronizer protocol will allow J3 to lock R as job J3 requires R for less time as compare to job J2 and does

not increase the blocking time of J1. This scenario is depicted in the figure 4. In summary, when J3 requests

resource R, it is granted access. So that it does not unnecessarily increasing the blocking of J1.

The adjustment of blocking parameters in Lines 24 and 28 of Algorithm 2 ensures this property. The

Pre-synchronizer protocol thus allows lower priority jobs to lock resource and thereby improves parallelism

when compared to other existing approaches.

 The latter is true because of the following reasons. The protocol allows a lower priority job to lock a

resource. This constraint checks, for each higher priority task  , whether the maximum blocking time
,i jCS is

smaller than permitted blocking time of resource
jR  k j

R  
.

VI. PROPOSED WORK

This works aims at the Synchronization in Embedded Real-Time operating systems. Real-time

systems have a finite set of resources, and hence, have a finite processing capacity. A RTOS is a multitasking

operating system designed to meet strict deadlines (Real-Time). Many embedded systems require software to

respond to inputs and events within a defined short period. RTOS is designed to control an embedded system

and deliver the real-time responsiveness and determinism required by the controlled device. Applications run

under the control of the RTOS, which schedules allocated CPU time.

6.1 Understanding the problem

This section introduce about problem of priority-inversion and the idea of how this is solved in the

context of uniprocessor scheduling. The next section then discuss that transferring this idea to multiprocessor

scheduling can cause a limitation in efficient use of available processing capacity (platform parallelism).

Uniprocessor systems

Suppose task set T is scheduled on a single processor using dynamic-priority scheduling. It is assumed

that the priority of a job is assigned according to EDF and is not affected by whether the job is holding a

resource or not. Table 1 shows an example of three jobs where J2 and J3 request some shared resource R and

job J1 never requests this resource. It is assumed that J1 has higher priority than J2 and J2 has higher priority

than J3.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 13

First J1 and J2 are released. J1 executes and then it requests job J3. Then J1 is blocked because of J3.

Then J2 starts its execution and it request resource R. J2 is granted the resource R and it continues executing

holding the resource. Before it releases R however, in the meantime, J3 is released for execution and it is

scheduled by the dispatcher. As soon as J3 starts, it requests resource R. This request is denied since R is held

by job J2, i.e., job J3 is blocked and cannot execute further. The job J2 executes for a long time and during its

execution the deadline of job J1 expires.

 In the above example, even when a higher priority job J1 is blocked by a lower priority job J3 (on a

shared resource R held by J2), a medium priority job J2 is allowed to execute and eventually delay the

execution of job J1. Although it is inevitable that J1 must block until J3 releases resource R, J1 must not be

required to wait for job J2 to finish executing because J2 is not holding any resource required by J1.

The research community has invented protocols to reduce this effect (priority-inversion), and those

protocols give jobs that hold shared resources temporarily a higher priority. Figure 3 shows the same jobs. But

now the priority of job J3 is promoted when it holds resource R. In this way, we can see that job J1 will meet

its deadline, because job J2 is not allowed to execute in between.

 There are different ways to promote the priority of a job that holds a resource; (i) the job could be

scheduled non-preemptively or (ii) the job could be assigned the ceiling priority of the resource or (iii) the job

could inherit (transitively) the maximum priority among all jobs that are presently blocked on the same

resource.

The latter approach can be combined with a test that is performed whenever any job requests a shared

resource; a lower priority task inherits the priority of the highest priority task that gets blocked. The priority of

lower task is increased once the higher priority task tries to lock the semaphore.

Multiprocessor systems

Suppose we have the same scenario as in Table 1, but now the jobs are scheduled on a multiprocessor

platform comprised of 2 processors. Then, it is possible to schedule job J2 without having to preempt the

execution of job J3, and therefore J2 will not interfere with the execution of job J1. This brings us to the

question, “Is it okay to schedule a medium priority job as long as it does not preempt any resource holding

lower priority job?” Although the answer seems positive from the previous example, this is not true in all

cases.

 Let us consider three jobs J1, J2 and J3 as in Table 1 shows an example of three jobs where J2 and

J3 request some shared resource R and job J1 never requests this resource. It is assumed that J1 has higher

priority than J2 and J2 has higher priority than J3.

First J1 and J2 are released. J1 executes and then it requests job J3. Then J1 is blocked because of J3.

Then J2 starts its execution and it request resource R. J2 is granted the resource R and it continues executing

holding the resource. Before it releases R however, in the meantime, J3 is released for execution and it is

scheduled by the dispatcher. As soon as J3 starts, it requests resource R. This request is denied since R is held

by job J2, i.e., job J3 is blocked and cannot execute further. The job J2 executes for a long time and during its

execution the deadline of job J1 expires.

 In the above example, even when a higher priority job J1 is blocked on lower priority job J3, a

medium priority job J2 is allowed to execute and eventually delay the execution of job J1. Although it is

inevitable that J1 must block until J3 executes, J1 must not be required to wait for job J2 to finish executing

because J1 is not holding any resource required by J2.

An improved resource sharing scenario in which job J2 is denied access to resource R2 is illustrated in

Figure 4. This then begs the question, “When should a request for shared resource be granted?”.A very safe

approach would be to grant access to only one resource at a time, but this would limit parallelism. And this

limited parallelism would imply that more work must be done at later times, which in turn can cause deadline

misses. Another approach would be to use a PCP-like protocol (as in uniprocessors) and decide that job J2

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 14

should be denied resource R2, because J2 does not have higher priority than the ceilings of all locked

resources (namely R1). But this can also unnecessarily limit parallelism resulting in the aforementioned

performance drawback.

If job J2 would have released resource R2 just prior to when job J1 requested access to the same

resource, then it would not have affected the finishing time of job J1. Thus we can see that a resource request

from a medium priority job can be granted if the resource is released before any other higher priority job

requests it. Or more generally, a resource request can be granted as long as the maximum blocking time

suffered by any higher priority job is guaranteed to be within pre-defined bounds. The next section present,

pre-synchronizer, a resource sharing protocol based on this idea. It allows parallelism (granting requests) as

much as possible, yet keeping the blocking time within limits.

6.2 Pre-synchronizer resource sharing protocol

The main idea:

From the discussion in the previous section we can draw the following conclusions about the design

of a protocol which avoids priority inversion and allows a large degree of parallel execution:

• A priority-inheritance mechanism should be used in order to avoid priority inversion but a PCP-like

mechanism should not be used (because it would restrict parallel execution too much).

• If a high-priority task requests to execute but it does not request a shared resource then this task should be

allowed to continue to execute.

• There should be a mechanism for preventing deadlock. (This is needed since we do not use PCP.)

• For each task-resource pair, there should be an associated counter variable. This counter specifies the

amount of blocking that the task can tolerate to be blocked when requesting the resource. For every resource

request, the protocol should check so that granting the request does not violate any tolerated blocking of any

other task-resource pairs.

• If a task is blocked for one time unit because the task requested a resource then the corresponding counter of

this task-resource pair should be decremented by one (since the amount of tolerable blocking is one time unit

less). In this section, the paper present a protocol based on these ideas and this protocol will avoid priority

inversion and allow a large degree of parallel execution.

 Firstly, notations are present that is needed. Then present the algorithm for global scheduling; it uses

the counters as mentioned above. The paper will then show how the counters as updated and discuss subtle

issues with the protocol.

Notations: We use the following notations.

• t : Denotes the current time instant.

• iLPB : Denotes the Lower Priority Blocking for jobs of task i . The present protocol guarantees that for

each resource access by jobs of task i , the maximum time for which this job will be blocked by lower priority

jobs is at most iLPB . The present protocol guarantees a value of ,max{ }k lCS for iLPB , where k i and l

ranges over resource that job of i access.

• ,k lMTR : Minimum Time to Request resource lR . For example, suppose jobs of k request resource lR in

three nesting during their execution; 1) jR requested and then lR with a minimum gap of 10 time units, 2) lR

alone requested, and 3) jR requested and then lR with a minimum gap of 5 time units. Then, ,k lMTR in this

case is 5.

• l k
R   :For each task k and each resource lR , lR


   denotes the maximum blocking (in future) that the

currently active job of k can incur in its current resource nesting. If the job is currently not in any nesting or if

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 15

lR


   is currently irrelevant, then it is set to . The value is initialized to , and only updated by the present

protocol.

•
iPTY : Priority of jobs of task

i at the current time instant.
iPTY is initialized to i , but can be temporarily

modified by pre-synchronizer protocol (PIP-like updates). A job of task
i has higher priority than a job of

task
j if

i jPTY PTY , or
i jPTY PTY and i j .

6.2.1 Pre-synchronizer Protocol

The Pre-synchronizer resource sharing protocol is given by Algorithm 1 and the update to lR


   is

performed by Algorithm 2.

Both these algorithms are executed at each time instant t, with Algorithm 2 being executed first. The

present paper previously explained the Pre-synchronizer protocol using examples illustrated in Figure 4.1

Algorithm 1 Global scheduling with resource sharing

1: _ 0n assigned

2: for each ready job J in priority order (based on iPTY) do

3: if _n assigned m then

4: if J is not requesting any resource then

5: Execute job J

6: _ _ 1n assigned n assigned 

7: else

8: Let
jR denote the resource requested.

9: if all resources in the nesting to which

10: this request belongs are unlocked then

11: if ,: J i jR CS


    or

12: i kPTY PTY then

13: Execute J and set iPTY equal to the

14: smallest kPTY such that JR


  

15: has a finite value (this update to iPTY

16: is reset when resource
jR is released).

17: _ _ 1n assigned n assigned 

18: end if

19: end if

20: end if

21: end if

22: end for

Algorithm 2 Update rules for lR


  

1: if A job of task i performs an outermost request for

2: resource jR (first request of a nested access) then

3: j i
R   ← iLPB

4: if jR is currently locked by a job of task k and

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 16

5:
k iPTY PTY then

6:
k iPTY PTY (this update to

kPTY is reset

7: when resource
jR is released).

8: end if

9: ,l i li
R MTR   for each non-outermost resource

lR

10: in this nested access.

11: for each non-outermost resource lR in this

12: nested access do

13: if lR is currently locked by a job of task k and

14: k iPTY PTY then

15: k iPTY PTY (this update to kPTY is reset

16: when resource lR is released).

17: end if

18: end for

19: end if

20: if a job of task i is granted access to a resource
jR (in response

to an earlier request) then

21: j i
R   

22: end if

23: if A job of task i is blocked in the interval (1,]t t then

24: 1l li i
R R        , for all . . . l i

l s t R    

25: else

26: if A job of task
j is directly blocking some job in the

27: interval (1,]t t then

28: 1l li i
R R        , for all . . . l i

l s t R    

29: end if

30: end if

The Pre-synchronizer protocol thus allows lower priority jobs to lock resources even when dependent

resources are locked by higher priority jobs, and thereby improves parallelism when compared to other

existing approaches. It can be shown that the Pre-synchronizer protocol prevents deadlocks (due to check in

Line 9 of Algorithm 1), and ensures that the maximum lower priority blocking suffered by any job of task i

is iLPB . The latter is true because of the following reasons.

• The protocol allows a lower priority job to lock a resource if it does not violate the blocking constraint in

Line 11 of Algorithm 1. This constraint checks, for each higher priority task k , whether the maximum

blocking time ,i jCS is smaller than permitted blocking time of resource jR  k j
R   .

VII. EXPERIMENTAL RESULTS

7.1 Results

Figure 5 shows initialization of the tasks with different parameters like A i.e. Arrival Time, B i.e.

Burst Time, D i.e. Deadline and R i.e. Resource required in particular clock cycle. For ex. In above figure,

Processor1 and Processor2 are two processors and processes initialized with p4: A=2, B=5,D=6 and R=3-5

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 17

means Process 4 arrives at 2 clock cycle, 5 is burst time for process 4, 6 is deadline(Relative) for process. And

R indicates it require resource from 3 clock cycle to 5 clock cycle.

Figure 5. Process Initialization and Processor

Figure 6. Allocation of Processes

Figure 6 shows simulation for allocation of processes to Job Queue and then Long Term Schedular

allocates that processes from job queue to Ready Queue. Then CPUSchedular sort ready queue according to

EDF and allocate processor to processes for execution.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 18

Figure 7. Execution of task on multiprocessor

In Figure 7, „*‟ indicates execution of process and „R‟ indicates resource required in particular clock

cycle.

Figure 8. Allocation of Resource

 In Figure 8, shows allocation of resource to process which is indicated using „#‟. „Starttime‟ indicates

starting time of execution of particular process on processor. And „Endtime‟ indicates end of execution of

process. Firstly, process from ready queue is allocated to processor which is free (Bydefault, at first time

Processor 1).

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 19

If Processor 1 is busy then next process allocate to Processor 2. The present work assumed scheduling

is preemptive .So in between execution of current process any high priority (earliest deadline) process arrives;

initial process gets preempted by newly arrived process and adds to ready queue. In between execution, if

process requires resource then it adds to Resource Queue and resource get allocate resource according to Pre-

synchronizer.

VIII. CONCLUSION

The paper has taken an initial step towards developing a generic resource-sharing framework for

periodic real-time tasks scheduled on a multiprocessor under global EDF. The present work has discussed that

there is a tradeoff between blocking and parallelism, and work has proposed the Pre-synchronizer protocol

which allows as much parallelism as possible, keeping blocking within limits.

 We may note that we are not the first ones to propose that a request for a resource should undergo a

check, to calculate the time when the resource will be released. In fact, SIRAP [1] (a protocol for hierarchical

scheduling) used such a test to decide if a job which requests a resource will finish execution before its budget

expires, and if the answer is no then the request is denied.

Although the Pre-synchronizer protocol addressed some issues concerning the efficient use of

parallelism in task executions, some open questions still remain.

 “Moving from uniprocessors to multiprocessors, whether it is still relevant to treat processors in a special

manner when compared to other shared resources?”.

In multiprocessors, there is a very clear trade-off between mutually exclusive access to shared

resources and ability to exploit processing parallelism. Then, it would be interesting to consider processors as

just another shared resource (although preemptable), and integrate their scheduling directly into the resource

sharing protocol.

 “How to integrate the loss of parallelism due to shared resources in schedulability analysis?”

 There are two factors leading to loss of parallelism; blocking from lower priority jobs and blocking

from higher priority jobs. Higher priority blocking arises when processors are idle because higher priority jobs

have locked resources required by lower priority jobs. The former is accounted for in the blocking factor (LPB

in our case). However, accounting for the latter is still an open problem.

IX. FUTURE SCOPE

In the future we plan to work further on the resource management issues on multi-core platforms and

we will investigate the possibility of improvement of the existing protocols as well as development of new

approaches. One future work will be to extend our global algorithm to other synchronization protocols, e.g,

Multiple Stack Resource Protocol (MSRP), Flexible Multiprocessor Locking Protocol (FMLP) under

partitioned scheduling.

This work has focused on resource management on multi-cores where resources are protected by

semaphores. In a fault-tolerant system, applications have to be protected from other applications that may

malfunction. If the applications are allowed to access shared memory, a malfunctioning application may

corrupt parts of the memory that is also shared by other applications. To avoid this, the applications are

isolated such that each of them can only access its dedicated portion of memory. However, in this case using

resource sharing protocols that rely on shared memory (semaphores) is not feasible. In the future, we aim to

work on resource management among real-time applications on multi-cores by means of message passing.

REFERENCES

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 20

[1] A. Shah and K. Kotecha, “Scheduling Algorithm for Real-Time Operating Systems Using ACO”, proceedings

of the International Conference on Computational Intelligence and Communication Networks (CICN), pp.617-

621,2010.

[2] A. Srinivasan and J. Anderson, “Efficient Scheduling of Soft Real-Time Applications on Multiprocessors”,

Journal of Embedded Computing, Volume 1, Number 2, pp. 285-302, 2005.

[3] Baker, T, “What to make of multicore processors for reliable real-time systems?” In Proceedings of the 15th

Ada-Europe International Conference on Reliable Software Technologies, LNCS 6106, pages 1–18, 2010.

[4] B. Brandenburg and J. Anderson, “Real-Time Resource-Sharing under Clustered Scheduling: Mutex, Reader-

Writer, and k-Exclusion Locks”, Proceedings of the ACM International Conference on Embedded Software, pp.

69-78, October 2011. Winner, best paper award, October 2011..

[5] B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson, “Real-Time Synchronization on

Multiprocessors: To Block or Not to Block, to Suspend or Spin?”, Proceedings of the 14th IEEE Real-Time and

Embedded Technology and Applications Symposium, pp. 342-353, April 2008..

[6] B. Ward, J. Herman, C. Kenna, and J. Anderson, “Making Shared Caches More Predictable on Multicore

Platforms”, Proceedings of the 25th Euromicro Conference on Real-Time Systems, pp. 157-167. Winner,

outstanding paper award, July 2013.

[7] Easwaran, A. and Andersson, B.,“Resource sharing in global fixed-priority preemptive multiprocessor

scheduling”. In Proceedings of the 30th IEEE Real-Time Systems Symposium, pages 377–386, 2009..

[8] Guan, N., Stigge, M., Yi, W., and Yu, G, “Cache-aware scheduling and analysis for multicores”. In Proceedings

of the 7th ACM International Conference on Embedded Software, pages 245– 254, 2009.

[9] Hu Wei and C. Tianzhou, “Embedded hard real-time scheduling algorithm based on task‟s resource

requirement”, Proceedings of Int. J. High Performance Computing and Networking, Vol. 6, Nos. ¾, 2010..

[10] H. Cho, Binoy Ravindran and E. Douglas Jensen, “Synchronization for an optimal real-time scheduling

algorithm on multiprocessors” [Online] Available.(Accessed: Aug 6,2013)

[11] J. Anderson, V. Bud, and, U. Devi, “An EDF-based Scheduling Algorithm for Multiprocessor Soft Real-

Time Systems”, Proceedings of the 17th Euromicro Conference on Real-Time Systems, pp. 199-208, July 2005.

[12] J. Carpenter, Shelly Funk, Philip Holman, A. Srinivasan and J. Anderson, Sanjoy Baruah, “A Categorization of

Real-Time Multiprocessor Scheduling Problems and Algorithms” [Online] Available. (Accessed: Aug 7,2013)

[13] Jeffay, K. “Scheduling sporadic tasks with shared resources in hard-real-time systems”. In Proceedings of the

13th IEEE Real-Time Systems Symposium, pages 89–99, 1992.

[14] M. Fan and Q. Gang, “Harmonic-Aware Multi-Core Scheduling For Fixed-Priority Real-Time Systems”, IEEE

Transactions on Parallel and Distributed Systems, Vol: pp, Issue:99, 2013.

[15] M. Kaladevi and Dr.S.Sathiyabama, “A Comparative Study of Scheduling Algorithms for Real Time Task”,

Proceeding of International Journal of Advances in Science and Technology, Vol. 1, No.4, 2010.

[16] S. Khushu and J. Simmons, “Scheduling and Synchronization in Embedded Real-Time Operating Systems”,

March 2001, [Online] Available. (Accessed: Aug 7,2013)

[17] Xie Bin,Yan Like and C. Tianzhou, “Real-Time Scheduling Algorithm for Embedded Systems with various

Resource Requirement” [Online] Available (Accessed: Aug 8,2013)

[18] V. Salmani, S.Taghavi Zargar, and M. Naghibzadeh, “A Modified Maximum Urgency First Scheduling

Algorithm for Real-Time Tasks”, World Academy of Science, Engineering and Technology 9, 2005.

[19] A.Habibi and V. Salmani, “Quantitative Comparison of Job-level Dynamic Scheduling Policies in Parallel

Real-time Systems” [Online] Available (Accessed: Aug 4,2014).

[20] B. Andersson, S. Baruah, and J. Jonsson, “Static-Priority Scheduling on Multiprocessors”. In Proc. IEEE Real-

Time Systems Symposium (RTSS), Dec 2001.

[21] B. Andersson, “Global Static-Priority Preemptive Multiprocessor Scheduling with Utilization Bound 38%”. In

Proc. ACM International Conference on Principles of Distributed Systems (OPODIS), volume 5401, pages 73–

88, 2008.

[22] S. Kato and N. Yamasaki., “Semi-Partitioned Fixed-Priority Scheduling on Multiprocessors”. In IEEE Real-

Time and Embedded Technology and Applications Symposium (RTAS), Apr. 2009.

[23] K. Lakshmanan, R. Rajkumar, and J. Lehoczky, “Partitioned Fixed- Priority Preemptive Scheduling for Multi-

core Processors”. In Euromicro Conference on Real-Time Systems (ECRTS), Jul. 2009.

[24] Sudarshan K. Dhall and C. L. Liu., “On a Real-Time Scheduling Problem”. Operations Research, 26(1):127–

140, 1978.

[25] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and S. Baruah, “A Categorization of Real-time

Multiprocessor Scheduling Problems and Algorithms”. In Handbook on Scheduling Algorithms, Methods, and

Models. Chapman Hall/CRC, Boca, 2004.

[26] M. Herlihy and I. Wing, “Linearizability: a correctness condition for concurrent objects”. ACM Transactions on

Prograrnrning Languages and Svstems, J 2(3):463-492, 1990.

[27] T. P. Baker, “Stack-based scheduling for realtime processes”. Journal of Real-Time Systems. 3(1):67-99, 1991.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 21

[28] L. Sha, R. Rajkumar, and P. Lehoczky, “ Priority inheritance protocols: An approach to real-time

synchronization”. IEEE Transactions on Computers, 39(9): 1175-1185, 1990.

[29] T. P. Baker, “Stack-based scheduling for realtime processes”. Journal of Real-Time Systems, 3(1):67–99, 1991.

[30] S. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “ Proportionate progress: a notion of fairness in

resource allocation”. Algorithmica, 15(6):600–625, 1996.

[31] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “ SIRAP: A synchronization protocol for hierarchical resource

sharing in real-time open systems”. pages 279–288, 2007.

[32] A. Block, H. Leontyev, B. B. Brandenburg, and J. H. Anderson, “ A flexible real-time locking protocol for

multiprocessors”. In Proc. of Real-time and Embedded Computing Systems and Applications Conference, pages

47–56, 2007.

[33] C.-M. Chen and S. K. Tripathi, “ Multiprocessor priority ceiling based protocols. Technical report”, 1994.

[34] Um. C. Devi, H. Leontyev, and J. H. Anderson, “ Efficient synchronization under global edf scheduling on

multiprocessors”, In Proc. of Euromicro Conference on Real-Time Systems, pages 75–84, 2006.

[35] E. W. Dijkstra, “Co-operating sequential processes”. Programming Languages, pages 43–112, 1968.

[36] P. Gai, G. Lipari, and M. Di Natale, “Minimizing memory utilization of real-time task sets in single and

multiprocessor systems-on-a-chip”, In Proc. of IEEE Real-Time Systems Symposium, page 73, 2001.

[37] P. Holman and J. H. Anderson, “Locking in pfairscheduled multiprocessor systems”, In Proc. of IEEE Real-

Time Systems Symposium, page 149, 2002.

[38] J. M. L´opez, J. L. D´ıaz, and F. D. Garc´ıa.,“ Utilization bounds for EDF scheduling on real-time

multiprocessor systems”, Journal of Real-Time Systems, 28(1):39–68, 2004.

[39] A.K. Mok., “ Fundamental Design Problems of Distributed Systems for the Hard-Real-Time Environment.”,

PhD Thesis, Department of Computer Science, Massachusetts Institute of Technology (MIT), 1983.

[40] R. Rajkumar, “Synchronization in Real-Time Systems: A Priority Inheritance Approach”. Kluwer Academic

Publishers,1991.

[41] R. Rajkumar, L. Sha, and J. P. Lehoczky, “Real-time synchronization protocols for multiprocessors”. pp 259–

269,1988.

[42] L. Sha, R. Rajkumar, and J. P. Lehoczky, “ Priority inheritance protocols: An approach to real-time

synchronization”, IEEE Transactions on Computers, 39(9):1175– 1185,1990.

[43] D. B. Stewart, and P. k. Khosla, August, “Real-Time Scheduling of Dynamically Reconfigurable Systems,” in

Proc. IEEE International Conference on Systems Engineering, Dayton Ohio, pp. 139-142, 1991.

