e-ISSN (0): 2348-4470

Scientific Journal of Impact Factor (SJIF): 4.72 p-ISSN (P): 2348-6406

International Journal of Advance Engineering and Research
Development

Volume 4, Issue 3, March -2017

DPDK-Based Implementation Of Application : File Downloader

Prof. Anup Kadam®,Vinay Singh? Rituraj Singh®, Virendra Singh Rawat *, Sandeep Kumar Singh®

1234 5Department of Computer Engineering, Army Institute of Technology, Pune, India

Abstract — Implemented a file downloader using the DPDK network interface for rump kernel. The combined result is a
userspace TCP/IP stack doing packet 1/0O via DPDK. DPDK is a framework used to provide a simple, complete
framework for fast processing of packets in data plane development applications and the framework creates a set of
libraries for specific environments. The DPDK implements a model known as run to compilation for processing of
packets, where all resources must be allocated before processing pakects by calling Data Plane applications, running on
logical cores as execution unit.DPDK also uses a pipeline model which passes packets or messages between different
cores via the rings.

Keywords-- Qemu/KVM,DPDK(Data Plane Development Kit),Rump Kernel,Open v-Switch, TCP/IP Stack

I. INTRODUCTION

DPDK is used to provide complete framework for fast processing of packets in data plane applications[1]. DPDK
framework creates an Environment Abstraction Layer (EAL) with the help of set of different libraries for specific
environments, which is mainly be specific to a mode of the Intel architecture, Linux user space or a specific platform [1].
Make files and configuration files are used to creating and building these environments. To create applications using
DPDK,once the EAL library is created, user links his application with the EAL library [1].

The DPDK implements a model known as run to completion model for processing of packets [1]. DPDK also uses a
pipeline model which passes packets or messages between cores via the rings. This allows different types of work to be
performed in stages via pipeline and may allow more efficient use of code on cores. Interrupts are not used in this model
because of the performance overhead imposed due to interrupt processing.

For DPDK enabled application a DPDK network interface for rump kernel is created and the combined result is a user
space TCP/IP stack doing packet 1/0 via DPDK.A rump kernel employs a mechanism for taking an monolithic operating
system kernel(existing), leaving everything out except drivers, and those drivers are used as a library components.

Il. GOALS AND OBJECTIVE
The main goal of this project is to improve the performance of network application by fast packet processing using Data

Plane Development Kit and better utilization of resources.At the end we will analyse and compare the Performance of
Network Application working on traditional environment and a DPDK enabled environment.

> App
User space
Socke | | ~.. _ | Ring
Kernel space_) ¢ [Priver €9 1y stfers
RX/TX |
NIC queues |

Figure 1. Packet Processing in Linux

@IJAERD-2017, All rights Reserved 786

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 4, Issue 3, March -2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

Ring
User space App BB DPDK R buffers
UIO driver
Kernel space
RX/TX |
NIC queues |

Figure 2. Packet Processing in Linux using
DPDK

1. SYSTEM REQUIREMENT

For the most of platforms, no special type of BIOS settings are needed to use basic DPDK functionality [1] . The Kernel
version that is used should be 2.7.34 or newer and glibc library version should be also needed to be 2.8 or latest. In the
Fedora Operating System and other common distributions os, such as Ubuntu, or Red Hat Enterprise Linux, the vendor
supplied kernel configurations can be used to run most of the DPDK applications. For other kernel builds UIO support
and HUGETLBFS should be enabled. For the large memory pool allocation used for packet buffers Hugepage support is
required.

IV. ECOSYSTEM SETUP

Creation an Ecosystem means installing and configuring following elements.

Building the DPDK 17.02 Target for OVS. [2]

Building Open vSwitch with DPDK-17.02. [2]

Create Open vSwitch DataBase and Start Daemon *ovs-vswitchd’. [2]
Configuring for OVS-DPDK Usage the Host. [2]

KVM/QEMU: Kernel-based Virtual Machine(KVVM) is a virtualization framework that is used for the kernel
that turns it into a hypervisor. We have used Quick Emulator(QEMU) to create two virtual machines for running
our applications. QEMU is fast, para-virtualized hypervisor emulator running with K\VVM.Because of Software
and Hardware Limitations of standard systems VMs are created, as DPDK is very heavily Intel hardware reliant.

6. Creating Virtual Machine using DPDK enabled ports with QEMU-KVM. [2]

7. Ecosystem Architecture: Following is the system which is developed after setup (figure 3).

ISARE I

V. BENCHMARKING OF ECOSYSTEM

iPerf is a tool used for active measuring of the maximum achievable bandwidth on IP networks. It supports tuning of
various parameters related to timing, buffers and protocols (UDP, SCTP, TCP, with IPv4 and IPv6). The iPerf tool
reports the network bandwidth, packet loss, and other parameters like speed of data flow. For benchmarking of
ecosystem iPerf is used. Iperf is run on client side and on server side there are two ports: one is DPDK enabled and one is
without DPDK enabled. Server side is ping from client side and speed is measured using iPerf tool.

Sr. | Parameter Before After
No.
1 | Bandwidth | 1.8(GBits/sec) | 3.36(GBits/sec)
(in
percent)
2 Transfer | 1.88(GBytes) | 3.91(GBytes)
in 0-10sec

@IJAERD-2017, All rights Reserved 787

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 4, Issue 3, March -2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

Table 1. Benchmarking Metrics using iperf Tool

Guest OS
]
1

|

DPDK
‘\
\
QEMU Instance
\

\
\

Guest OS
)
{
DPDK
1

{
!
QEIyw Instance
¢

/
/

N s
oVs + DPDK/ ~ (User Space)

KviM

(Kernel Space)

Linux Operating System

Figure 3. Ecosystem

@O ® vmi@vmi: ~
| ‘ UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:112 errors:0 dropped:® overruns:® frame:0

0S8 6 vm@vm2: ~

RX packets:365 errors:0 dropped:® overruns:®
TX packets:365 errors:0 dropped:® overruns:0

collisions:® txqueuelen:1i . TX packets:125 errors:0 dropped:® overruns:® carrier:0
RX bytes:26889 (26.8 KB) TX bytes:26889 (26. [coLltsions:Apexqleuctens1o80
yres () yEes (= RX bytes:5218 (5.2 KB) TX bytes:9460 (9.4 KB)
6 lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
;CEBsggt(gzggult) inet6 addr: ::1/128 Scope:Host
S e e s ke i AR i UP LOOPBACK RUNNING MTU:65536 Metric:1
5 RX packets:449 errors:0 dropped:® overruns:® frame:0
Ig} }zizlvﬁz.lﬁs.l.?;;:s?::t Soe;aggzgsaﬁed uithiloz. TX packets:449 errors:0 dropped:0 overruns:@ carrier:0
4] 0.6- 1.0 sec 204 MBytes 1.72 Gbits/sec colli=Ton=:aRexqucuclen
4} iioL 96 sac 31 MB)y/tes 1.77 thts;sec 6 RX bytes:33073 (33.0 KB) TX bytes:33073 (33.0 KB)
4] 2.0- 3.0 sec 207 MBytes 1.74 Gbits/sec . i
4] 3.6- 4.0 sec 246 MBytes 2.07 Gbits/sec B e
H ;:g: 2:: e ;g; nsﬁ: ;ﬂ gttz:;:ﬁz vﬂ«cuent connecting to 192.168.10.14, TCP port 5001
4] 6.0- 7.0 sec 191 MBytes 1.61 Gbits/sec TCP window size: 85.0 KByte (default)
4] 7.0- 8.0 sec 313 MBytes 2.62 Gbits/sec ' B i
4] 8.0- 9.0 sec 237 MBytes 1.99 Gbits/sec - 5 Floppy Disk liz.lﬁa.lg.ls gort 192.168.10.14 port 5001
4] 9.0-10.0 sec 225 MBytes 1.88 Gbits/sec o i; 5 zri;sczrt
4] ©0.0-10.0 sec 2.19 GBytes 1.87 Gbits/sec [3] 0.0-10.0 sec 2. y e
] vmi@vmi:~$

Figure 4. iperf benchmarking for VM without
DPDK

056 vm@vm2: ~
vm2@vm2:~$ iperf -c 192.168.10.15

Terminal

Oe6 vmi@vmi:~
Client connecting to 192.168.10.15, TCP port 5001 = _
TCP window size: 85.0 KByte (default) |

3] local 192.168.10.14 port 52482 connected with 192.168.10.15

@v vm1@vm1

vmi@vmi:~$ iperf -s -1 1

E ID] Interval Transfer Bandwidt! (=] Server listening on TCP port 56001
[3] 0.0-10.0 sec 3.91 GBytes TCP window size: 85.3 KByte (default)
vm2@vm2:~$ l 6 --
4] local 192.168.10.15 port 5001 connected with 192.168.1€
ID] Interval Transfer Bandwidth
4] 0.0- 1.0 sec 354 MBytes 2.97 Gbits/sec
4 1.0- 2.0 sec 366 MBytes 3.07 Gbits/sec
4 2.0- 3.0 sec 348 MBytes 2.92 Gbits/sec
4] 3.0- 4.0 sec 426 MBytes 3.57 Gbits/sec
4] 4.0- 5.0 sec 332 MBytes 2.78 Gbits/sec
4 4] 5.0- 6.0 sec 365 MBytes 3.06 Gbits/sec
4] 6.0- 7.0 sec 545 MBytes 4.57 Gbits/sec
4 7.06- 8.0 sec 359 MBytes 3.01 Gbits/sec
,B< 14] 8.6- 9.0 sec 386 MBytes 3.24 Gbits/sec
4] 9.0-10.0 sec 525 MBytes 4.40 Gbits/sec
[4] 0.0-10.0 sec 3.91 GBytes 3.36 Gbits/sec

Figure 5. iperf benchmarking for VM with DPDK

VI. IMPLEMENTATION
Using Qemu/KVM two Virtual Machines , VM1 and VM2 are created .On VML a traditional environment is set and a
HTTP downloader without DPDK is run , i.e. packet processing is being done in kernel space .

6.1. Compiling Rump-Kernel with DPDK

Rump kernel is a light weight kernel which has free, componentized,reusable, kernel quality drivers such as PCI device
drivers, file systems, POSIX system calls , TCP/IP and SCSI protocol stacks[3]. Unlike unix kernel, rump kernel makes

@IJAERD-2017, All rights Reserved 788

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 4, Issue 3, March -2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

hypercalls directly to the hypervisor. On VM2 to run our DPDK enabled application the port which is being used by the
application is set down using the following command:

ifconfig ethO down

Rump kernel and DPDK are compiled on VM2 and the application port is bound to DPDK using the following
command:

sudo modprobe uio_pci_generic
sudo modprobe uio sudo

insmod dpdk/build/kmod/igh_uio.ko
insmod dpdk/buildkmod/rte_kni.ko

sudo dpdk_nic_bind.py -b igh_uio ethO

User Space Rump Kernel

DPDK

Hypercalls

Kernel Space

HARDWARE

Figure 6. Architecture of Rump Kernel

6.2. Application Development: File Downloader

Two application i.e. HTTP Downloader, one using DPDK libraries and one without it are developed. The application
which is developed without using DPDK libraries is happening there. Using DPDK libraries and rump kernel a HTTP
downloader is developed to run on VM2, This application is running on a VM2 compiled as a client. Apache server is
running on Hypervisor(Host Machine) where file to be downloaded is kept.

Vv 1 Vim 2
Rump Kernel

Application / DPDK

Kerne] Space | Kernel Space
Ovs+DPDK OVS+DPDK

LOCAL HOST SERVER

HOST OS

Figure 7. Architecture of file downloader

@IJAERD-2017, All rights Reserved 789

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 4, Issue 3, March -2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

286 vm2@vm2: ~

File Edit View Search Terminal Help
Total lenght = -2068472268
Received byte size = 9999
Total lenght = -2068462269
Received byte size = 9999
Total lenght = -2068452270
Received byte size = 9999
Total lenght = -2068442271
Received byte size = 9999
Total lenght = -2068432272
Received byte size = 9999
Total lenght = -2068422273
Received byte size = 9999
Total lenght = -2068412274
Received byte size = 9999
Total lenght = -2068402275
Received byte size = 9999
Total lenght = -2068392276
Received byte size = 9999
Total lenght = -2068382277
Received byte size = 6896
Total lenght = -2868375381

Received byte size = @
Total lenght = -2068375381Reply received in time :[158.491724

vmzgvmz:~S$ [

Figure 8. File Downloader Using Traditional Socket Programming

root@vm1: /home/vm1/drv-netif-dpdk < 4)) 305PM 1t
Receilved byte size = 23168
,Total Length = -2069220432
Received byte size = 5792
Total Length = -2069214640
=== Received byte size = 40544 [
= Total Length = -2069174096

Received byte size = 197416

Total Length = -2068976680
g Received byte size = 7240
Total Length = -2068969440
Received byte size = 1448
Total Length = -2068967992
Received byte size = 2896
Total Length = -2068965096
Received byte size = 1448
6 Total Length = -2068963648
Received byte size = 188512
Total Length = -2068783136
Received byte size = 5792
Total Length = -2068777344
Received byte size = 1448
Total Length = -2068775896

o 4

Received byte size = 85432
Total Length = -2068690464
Received byte size = 197416
Total Length = -2068493048
Received byte size = 117184
Total Length = -2068375864
Received byte size = 0

Total Length =_-2068 864
-_— time taken :[63.736591fump kernel halting...
! | |halted

Figure 9. File Downloader Using DPDK network interface for rump kernels
VII. ANALYSIS

Drv-netif-dpdk is used for building a DPDK network interface for rump kernels [4]. The combined result of it is a TCP/IP
stack doing packet 1/0 via DPDK [4]. It is used to build a DPDK enabled file downloader and traditional file downloader
is build using traditional socket programming in C.After successful execution of above two application on two separate
ecosystem performance analysis is done over time taken to download different file size and we found approximate of 3x
times performance improvement.

Sr. File Traditional DPDK enabled
No. Size Downloader(sec) Downloader(sec)
1 2.2 158.4917 63.7365

GB
2 4.6 314.5348 117.4863
GB
2 14.4 1151.5348 347.5789
GB

Table 2. Benchmarking Metrics of File Downloader Applications

@IJAERD-2017, All rights Reserved 790

International Journal of Advance Engineering and Research Development (IJAERD)
Volume 4, Issue 3, March -2017, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

VIII. CONCLUSION

By using the Intel DPDK library on a common platform, we can experience faster network packet processing,
potentially reduce cost by simplifying the hardware to industry standard server architectures, conserve energy by
using power-optimized Intel platforms, increase efficiency by maximizing the utilization of your existing
environment.

REFERENCES

http://dpdk.org/
https://software.intel.com/en-us/articles/using-open-vswitch-with-dpdk-for-inter-vm-nfv-applications

http://rumpkernel.org/
https://github.com/rumpkernel/wiki/wiki/Repo:-drv-netif-dpdk

N

@IJAERD-2017, All rights Reserved 791

http://dpdk.org/
https://software.intel.com/en-us/articles/using-open-vswitch-with-dpdk-for-inter-vm-nfv-applications
http://rumpkernel.org/
https://github.com/rumpkernel/wiki/wiki/Repo:-drv-netif-dpdk

