
International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 1

Overload Management in Real Time Database Systems

Miss. Rutuja A. Gulhane1 , Dr. M. S. Ali2

1
Department of Computer Science and Engineering, Prof. Ram Meghe College of Engineering &

Management, Email id: gulhanerutuja@gmail.com

2
Department of Computer Science and Engineering, Prof. Ram Meghe College of Engineering &

Management, Email id: softalis@hotmail.com

Abstract - As the complexity of real-time systems and application is going up, the amount of
information to be handled by real-time systems increases, motivating the need for database and data
service functionality. A conventional DBMS aims to maximize transaction throughput and minimize

response time. However, a real-time DBMS aims to provide predictability in transaction processing
and offer different quality of services. To address this need, it requires the architecture of a real-time

database management system which includes a real-time control layer and provides sophisticated
admission control, scheduling and overload management. In this paper, we introduce a dynamic
admission control and parametrable scheduling algorithm called MOA. The MOA algorithm makes

the transactions with higher importance as early arrival to be executed first in overload situations. In
addition, the system architecture for real-time database system (RTDBS) has been discussed to

achieve a significant performance even in overload situation.

Keywords - Real-Time Database System, Overload Management, Transaction Scheduling.

I. INTRODUCTION

As the volume of information being handeled by data- intensive applications faced with
timing requirements increasing day-by-day, there is a need to apply database technology to real-time

systems. The design objective of conventional databases do not support timing and temporal
requirements, and therefore they are not appropriate for real-time applications. A high-performance
database which is simply fast and do not have the capability of specifying and enforcing time

constraints are also not suitable for real-time applications.

A real-time system must include ability to meet the time constraints which has basic

specification and design correctness arguments and that correctness depends not only on the logical
result of a computation, but also on the timeliness of its actions. A database system which supports a
real-time application can be called „a real-time database system (RTDBS)‟. RTDBS is a database

system where at least some transactions have explicit timing constraints (such as deadline). It stores
data whose operations execute with real-time response to the transactions of data- intensive

applications, such as e-commerce applications, stock market, banking, internet bids, and control
systems.

Although real-time transaction processing is complex because in addition to satisfying

database consistency requirement, as in traditional database systems, RTDBS timing constraints are
an integral part of the correctness criterion. The serializability is a criterion for correctness of

concurrent transaction execution. The principles and techniques of transaction management in
Database Management Systems need to be applied to real-time applications for efficient storage and
manipulation of information. Furthermore, the data in such database has application-acceptable

levels of logical and temporal consistency of data, which is able to handle the transactions with the
ACID properties: atomicity, consistency, isolation and durability. RTDBS is the more efficient way

of handling large amounts of data which gather database from the environment, process it in the
context of information acquired in the past to provide timely and temporally correct response.

mailto:gulhanerutuja@gmail.com

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 2

The scheduling of operations in a RTDBS based on two components: time-critical scheduling

and concurrency control. To guarantee the isolation and atomicity properties, it requires the design of
real-time concurrency and commit protocols. Traditionally concurrency control real- time protocols

can be broadly classified as either pessimistic (or locking) or optimistic (or validation). Pessimistic
protocols detect conflicts as soon as they occur and resolve them using blocking that may result in
future inconsistencies are detected. Two Phase Locking (2PL) [1] is the most common pessimistic

concurrency control protocol. Optimistic protocols such as SCC [2], [3], WAIT-50 [4] detect
conflicts at transaction commit time and resolve them using rollbacks (restarts). Examples of real-

time commit protocols are OPT [5] and PROMPT [6]. For a system configuration, the primary real-
time performance determinants are the transaction scheduling policies for the system resources.
Scheduling policies such as EDF [7], EDF-CR [8], [9] are used to assign transaction priority and it

helps to schedule transactions within the scheduling queue.

Although all of these feature, the goals of conventional DBMS and real-time DBMS are

different. Moreover, real- time DBMS performance objectives differ from those of conventional
database system in that maximizing the number of transactions that complete before their deadlines
becomes the decisive performance objective, rather than merely maximizing concurrency (or

throughput).

II. RELATED WORK

In 1991, J.R. Haritsa et al. [10] have proposed a new priority assignment policy called

Adaptive Earliest Deadline (AED). It stabilizes the overload performance of earliest deadline in
RTDBS environment. It features a feedback control mechanism that detects overload conditions
modifies transaction priority assignments accordingly. They have evaluated the Hierarchical Earliest

Deadline (HED) is the extension of AED policy and was designed to handle applications where
transactions may be assigned different values. They have shown the results that, both for workloads

with limited spread in transaction values and for workloads with pronounced skew in transaction
values, the HED policy provided the best overall performance.

In 1992, Sang H. Son et al. [11] have been proposed a new approach to real-time transaction

scheduling in which there is two hybrid real- time concurrency control protocols which combine
pessimistic and optimistic approaches to concurrency control in order to control blocking and

aborting in a more effective manner. The two-phase locking is termed as being pessimistic and an
optimistic approach is a natural alternative which schedules all operations hoping that nothing will
go wrong, such as non-serializable execution. They have shown the results that over the entire

operational range, optimistic schemes outperform the locking-based pessimistic protocol.

In 1993, Ozgur Ulusoy et al. [12] have designed a Real-Time Transaction Scheduling in

Database Systems and concentrated on the concurrency control protocol in RTDBS. The authors
have evaluated the performance of the protocols through simulations by using a detailed model of a
single-site RTDBS. They have proposed a new concurrency control protocols such as Data Priority-

based locking protocol (DP) and Optimistic protocol (OP) under conditions of high transaction load
and high data contention with improved performance.

In 1994, Y -K. Kim et al. [13] have proposed a database server for distributed real-time
systems. They have chosen the ARTS operating system kernel as the basis for the real- time database
server. ARTS-RTDB supports both hard and soft real-time transactions. They have provided a

flexible programming interface and standard client template to allow quick prototyping. They have
incorporated the notion of imprecise computation into RTDB.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 3

In 1994, Brad Adelberg et al. [14] have emulated soft real- time scheduling using traditional

operating system schedulers. This paper focuses on soft real-time applications. The authors have
addressed methods of emulating real- time scheduling algorithms on top of standard time-share

schedulers and developed three strategies for priority assignment to emulate EDF and Least Slack
First scheduling within a traditional multi- tasking environment. They have shown the result that the
emulation algorithms are comparable in performance to the real-time algorithms and in some

instances outperform them. On the other hand, in 1995, Brad Adelberg et al. [15] have applied
updated streams in a soft real-time database system. In this paper, four different algorithms are used

to schedule both applying updates to imported views and running user transactions perform under
different assumptions about data freshness. The authors have discussed about the various properties
of updates and views (including staleness) that affect the tradeoff between transaction response time

and data freshness. The results have shown that the system performance was affected by the choice
of algorithm and and system properties. Whereas in 1996, Brad Alderberg et al. [16] have proposed

database support for efficiently maintaining derived data. The authors have propsed the forced delay
recomputation algorithm. They have shown that forced delay greatly reduced the recomputation cost
while only modestly diminished data timeliness across a wide range of parameter values. It can

exploit update locality to improve both data freshness and transaction response time.

In 1996, B. Adelberg et al. [17] have proposed the Stanford Real-time Information Processor

(STRIP) which is a soft real-time database system and was built for the UNIX operating system. It is
a database designed for heterogeneous environments and provides support for value function
scheduling and for temporal constraints on data. Its goals include high performance and ability to

share data in open systems. It does not support any notion of performance guarantees or hard real-
time constraints and hence cannot be used for the applications we are envisioning in our work.

Whereas in 1996, S. F. Andler et al. [18] have proposed Active Real-Time Database System
(DeeDS) which is distributed and supports both hard and soft transactions. It is an event-triggered
real-time database system using dynamic scheduling of sets of transactions. The reactive behavior is

modeled using (event-condition-action) ECA rules. In the current prototype, they do not support
temporal constraints of data and multimedia information.

In 1996, J. Taina et al. [19] have a RODAIN, a real-time object-oriented database system for
telecommunications. It supports firm real-time database system. In 1996, A. Datta et al. [20] have
proposed a multiclass transaction scheduling and overload management in firm real-time database

systems. The authors have introduced a dynamic admission control policy and priority based
scheduling policy for disk resident RTDBS called Adaptive Access Parameter (AAP) which is a

scheduling mechanism for multiclass transactions in RTDBS. The admission control policy of AAP
serves dual purposes – overload management as well as bias control towards particular transaction
classes. And it leads to dramatic performance improvement both in terms of reducing transaction

misses as well as fairness. Whereas in 1996, A. Bestavros et al. [21] have proposed an admission
control paradigm for value-cognizant Real-Time Database in which a transaction is submitted to the

system as a pair of processes: a primary task and a compensating task. The authors have considered
only hard-deadline transactions. The goal of the admission control and scheduling protocol employed
in the system is to maximize system profit dynamically.

In 1999, J. A. Stankovic et al. [22] have proposed BeeHive: Global Multimedia Database
Support for dependable, real- time applications. It is a virtual database where the data in the database

can be located in multiple locations. It includes features along real-time interface, fault tolerance
interface, quality of service for audio and video, and security dimensions. The authors have achieved
a high degree in the usability of a virtual database system where a user can obtain secure and timely

access to time valid data even in the presence of faults. Whereas In 1999, J. Hansson et al. [23] have
proposed value-driven multi-class Overload Management. They have presented a value-driven

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 4

overload management algorithm with a bias control mechanism, called OR-ULD/BC, which attempts

to bias the execution among transaction classes such that minimum completion ratio constraints are
satisfied. They have shown the performance analysi of OR-ULD/BC enforces transaction class

timeliness requirements within a specified operational envelope.

In 2002, K. -D. Kang et al. [24] have proposed Service Differentiation in Real-Time Main
Memory Database to execute transactions in temporally consistent data. Based on the importance of

the transactions, they have been classified into several services. Different degree of deadline miss
ratio and feedback control has been applied among the service classes to support the miss ratio and

freshness guarantees. They have shown the results that the approach can provide the specified QoS
when the baseline approaches fail to support the miss ratio and/or freshness guarantees in the
presence of unpredictable workloads and access patterns. The target performance is achieved by

dynamically adapting the system behaviour based on the current performance error measured by the
monitor.

In 2002, Buttazzo et al. [25] have presented the work of the periodicity of a set of tasks in
response to load variations is changed. Aperiodic tasks are not considered in this model. A
feedforward scheduling algorithm for optimizing the performance of a set of control tasks is

presented A. Cervin et al. in [26]. In order to keep the utilization at a certain reference, the rates of
the control tasks are adjusted. Further, they have used a feedforward structure to make the feedback

scheduler more reactive to change in the workload. The approaches above do not address imprecise
computation. A feedback control scheduling framework has been presented by Parekh et al. [27].
Each task has several QoS levels giving results of varying quality. Utilization and miss percentage

are monitored and control by changing the QoS of a set of tasks. Experiment shows that their
algorithms provide performance guarantees even when execution time varies considerably from the

estimate. However, they do not address QoS management of real-time data services.

In 2003, M. Amirijoo et al. [28] have addressed the question of QoS in terms of imprecision.
Further, in 2004, M. Amirijoo et al. [29], they have proposed an approach called RDS, for managing

the performance of multi-class real-time data services. In this approach, the transactions are
classified according to their importance, and a QoS specification can be chosen for each importance

level. RDS is a major improvement of the previous approaches, in which the QoS specification
increased with the importance level.

In 2006, M. Amirijoo et al. [30] have proposed an approach for managing the quality of

service of real- time databases that provide imprecise and differentiated services, and that operate in
unpredictable environments. Transactions are classified into service classes according to their level

of importance which are further classified into subclasses based on their quality of service
requirements. In this way transactions are explicitly differentiated according to their importance and
quality of service requests. The authors have shown that performance evaluation during overloads

the most important transactions are guaranteed to meet their deadlines and that reliable quality of
service is provided even in the face of varying load.

In 2006, M. Amirijoo et al. [31] have proposed a framework for QoS specification and
management. It has been developed in real-time databases supporting imprecise computation. The
architecture based on feedback control scheduling, and a set of algorithms implementing different

policies and behaviors. The approach gives a robust and controlled behavior of real- time databases,
even for transient overloads and with inaccurate runtime estimates of the transactions. Further,

performance experiments show that the proposed algorithms outperform a set of baseline algorithms,
where transactions are scheduled with EDF and feedback control.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 5

In 2006, Leila Baccouche [32] has proposed Multi-Class Overload Architecture (MOA) for

Real-time Database Systems: Framework and Algorithms. The architecture includes a real-time
control layer which provides sophisticated admission control, scheduling and overload management.

They have considered an importance classes that have been categorized as high, medium and low
level of transaction workload. They have evaluated the H/M/L dispatching algorithm with the
developed simulator and they have shown the results in terms of percentage. The proposed algorithm

has made transactions with higher importance have small miss deadline percentage.

In 2012, R. K. Mishra et al. [33] have proposed a novel protocol RCCOS (Replica
Concurrency-Control for Overloaded Systems) for overload management and admission control in
real-time distributed database systems. It can be easily integrated in current systems to handle

overload processors without altering the database consistency which is the main objective of
DRTDBSs. Our protocol RCCOS (Replica Concurrency-Control for Overloaded Systems) augments

the protocol MIRROR, a concurrency control protocol designed for firm-deadline applications
operating on replicated real-time databases in order to manage efficiently transactions when the
distributed system is overloaded.

III. ANALYTICAL MODEL FOR REAL-TIME TRANSACTIONS

 Real-Time transactions can be distinguished based on the effect of missing their deadlines.
They can be grouped into three categories: transactions that have hard deadlines, soft deadlines and

firm deadlines.

A. Hard Deadline Transactions

 A hard deadline transaction has hard timing constraints that must absolutely be met. The

transactions are those which may result in a catastrophe if their deadlines are missed. There is no
scope to miss its deadline in hard deadline transactions. Missing a hard-deadline can result in
catastrophic consequences. Such systems are known as safety-critical. And we can view such tardy

transactions as carrying a large negative value to the system. Typically safety-critical applications
(e.g. nuclear power plant control) that respond to life or environment-threatening emergency

situations can be classified in this category. Thus, the design of a hard real-time system requires that
a number of performance and reliability trade-off issues to be carefully evaluated.

B. Soft Deadline Transactions

 A soft real-time application is characterized by a soft deadline whose adherence is desirable,
although not critical, for the functioning of the system. Soft deadline transactions have some

diminished value to the system even if they complete after their deadlines have expired. Such
systems tolerate imprecise results and less quality of service. There is scope to miss its deadline in
soft deadline transactions which may lead to performance degradation but do not entail catastrophic

results. That is, missing a soft-deadline does not cause a system failure or compromises the system‟s
integrity.

C. Firm Deadline Transactions

A firm real-time task, like a soft real-time task, is characterized by a firm deadline whose
adherence is desirable, although not critical, for the functioning of the system. Firm deadline

transactions, have no value once their deadlines expire, completing them is of no utility and may
even be harmful to the system. Thus, tardy transactions are permanently aborted (killed) and

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 6

discarded as soon as its deadline is missed. Firm deadlines should be met but may be missed

occasionally (e.g. during transient overloads).

Real-time database transactions are usually in either firm deadline or soft deadline class. In

addition to these timing constraints, as there is a need to maintain consistency between the actual
state of the environment and the state as reflected by the contents of the database, it needs to extend
the timing correctness requirements in a RTDBS. This leads to the temporal consistency and its two

components: absolute consistency between the state of the environment and its reflection in the
database, and relative consistency among the reflected data used to derive other data.

The transaction temporal consistency requirements are required for real-time transactions. A
transaction τi is characterized by the following attributes:

TABLE 1. Attributes of Transaction τi

Attributes Meaning Description

ri Ready time The time in which the transaction arrives to the system.

di Relative deadline
It indicates requirements to complete transaction before

the instant di.

wei Worst case execution time The execution time of a transaction is data dependant.

rei Remaining execution time It represents the time to complete the transaction.

sti Slack time of τi
It represents maximum t ime of transaction can be

delayed and still satisfy its deadline. sti = di – ri – wei.

impi Importance of τi
It indicates how much it is critical to the system that

the transaction meets its deadline.

Transaction type can have two values local or distributed. A local transaction is created by
the local node. A distributed transaction is a sub transaction initiated by a distant node and sent to the

current node to be executed.

Transaction can be either periodic or aperiodic. Periodic transactions tend to have hard

deadlines, characterized by their period(s) and their required execution time per period. They need to
update data frequently. Let pi be the invocation period. A periodic transaction is executed each pi
instants. Usually pi=di. Aperiodic transactions tend to have soft deadlines, characterized by

unknown arrival instants.

IV. SYSTEM ARCHITECTURE

The system architecture is the Multi-Class Overload Architecture (MOA) which allows

executing transactions under overload situation in real-time database systems. The present work

proposes a framework for dynamically resolving transient overloads in real-time database systems,
yielding predictable behavior and graceful performance degradation during transient overloads. The

framework consists of a strategy and a scheduling architecture. Features of the system architecture
are:

 It controls transactions upon their arrival.

 It reduces miss deadline, function of transaction classes.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 7

 Overload situations detection and resolution.

MOA is a real-time control layer that should be at end integrated to the database system. The
system for overload management consists of three components: a transaction controller, a transaction

scheduler and a transaction manager. Figure 1 presents the system architecture of MOA.

 Figure 1. System architecture (MOA)

4.1. The Transaction Controller

The transaction controller requires the admission controller to test the admission of
transactions and the overload resolver to solve overload situations.

A. The Admission Controller

When a transaction is submitted to the system, an admission controller is employed to decide
whether to admit or reject that transaction. The admission controller controls the admission of new

transactions and tests the acceptability upon their arrival. The controller makes a decision which
depends on the state of the current system and attributes of transaction.

The schedule is not computed at that time, the controller simply checks when an acceptance
condition is satisfied. If the test succeeds, this means that the transaction scheduler will be able to
find a feasible schedule including the new transaction guarantying that each transaction meets its

deadline.

B. The Overload Resolver

Depending on the characteristics of the transaction, the overload resolver component may be
invoked in order to find a solution where the rejected transaction by the admission controller is
accepted. The resolver computes the amount of processing time that needs to be released in order to

resolve transient overloads, and initializes a negotiation of the requirements of the admitted
transactions and the new transaction.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 8

That means if the overload situation occurs, overload resolver resolves the situation by

tracking the time needed to execute the current query and then performing more or less queries based
on the load of the database system.

4.2. The Transaction Scheduler

The transaction scheduler requires queue handler for inserting and dispatching queries.
Transactions accepted by the admission controller are sent to the inserting module. This later inserts

them in the associated queues according to the priorities. However, in the system, the priorities are
assigned to the transactions according to the First Come First Serve (FCFS) scheduling policy with

serial execution. This policy assigns the highest priority to the transaction with the earliest release
time.

To address this need, a novel parametrable priority based scheduling algorithm called MOA

is applied by the dispatcher which is specific to the transaction multi-class model. The MOA
algorithm makes the transactions with higher importance as early arrival to be executed first in

overload situations. Dispatching queries are responsible of transaction extraction from the queue
handler. When transaction execution is finished, the transaction scheduler is executed in order to
select a transaction for execution and information regarding any gained processing time is reported

by the dispatcher back to the scheduler. The dispatcher applies a novel parametrable priority based
scheduling algorithm called MOA which is specific to transaction multi-class model.

A. Queue Handler

Queue handler provides the basic for the queues handling and the maintenance of information

on the queues. It consists of three modules: one for transaction insertion at the position specified by
the transaction scheduler, one for the extraction according to the algorithm applied by the dispatcher

and a last module for the maintenance of information on the queues.

Upon each transaction arrival, the inserting algorithm based on FCFS scheduling policy is
executed to insert the transaction in its appropriate queue. The MOA algorithm is used by the

dispatcher to extract a transaction from a specified position. Besides, the information module
computes all the information needed by the dispatching algorithm for example the total number of

transactions in queue, the frequency, cost and time require to calculate the total score of each of the
transaction.

B. MOA Algorithm

The MOA architecture is demonstrated in two ways: manually enter data to insert, update and

delete command and by applying MOA algorithm for query file containing select statement.

When we deal with overloads, we have to manage them in order to guarantee real-time
properties of transactions. To manage the overload, set the threshold to some value and manually

enter the data by the use of insert, update and delete command. Start the query thread to execute the
queries and update the database. Apply fuzzy logic to get the new number of record for processing

on the basis of time. Check the entry for new transactions upon their arrival for processing by
considering the previous and current time. If the previous time is less than current time, decrement
the threshold by 1 and if previous time is greater than current time, increment the threshold by 1.

That means based on the load of the database, MOA has reduced or increased the number of
processing queries in the system. The controller makes a decision based on the current system state

and transaction attributes to check that all queries get executed by MOA.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 9

MOA is also demonstrated by applying MOA algorithm to the chosen query file containing

select statement. The system applies First Come First Serve (FCFS) scheduling policy for scheduling
the transactions and finds the frequency, cost and time of each of the query.

 To find frequency of the query:

Step 1: Read the contents of the query file line by line and get the count
Step 2: Compare two resultsets rsCurrent (cnt) and rsInner (icnt)

Step 3: Check if the same query occurs in both resultsets, then increment the frequency by 1.

 To find cost of the query

Step 1: Check if the number of records is equal in ResultSet to find the storage cost
Step 2: Get the count of number of columns in ResultSet
Step 3: Check all the columns in the record to get the string result in bytes

Step 4: Increment the records to check all the records present in the table and get the length of the
records in Resultset.

 To find execution time of the query

Step 1: Get the count of list of queries between start date and end date

Step 2: Subtract the start time from the end time to get the current execution time for each query.

After calculating the frequency, cost and time for each of the query in the chosen file, the
system needs to find the query threshold value for maintaining the view on the database. Query

threshold can be calculated on the basis of the total score of each of the query. And for calculating
the total score (sq), there is need to find the values of normalized frequency (nf), normalized time

(nt) and normalized storage (ns).

 The formula for calculating nf, nt and ns:

nf = f / max_f;
nt = t / max_t;

ns = s / max_s;

 The formula for calculating total score:

sq = (alpha * nf) + (beta * (1 - ns)) + (delta * (1 - nt));

 The formula for calculating threshold:

Threshold = Threshold + sq;
Threshold = Threshold / Total no. of queries in the file

 After calculating the query threshold, check which queries have total score value more than

threshold, update the view for those queries. And finally get the result in Percentile Feedback. By
getting the result in percentile, we can conclude if we need to or not need to make the view for the

query, thereby making it easier to fetch the data from the database.

 The formula for calculating Percentile Feedback:

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 10

Percentile Feedback = No. of maintained view * 100

 Total no. of executed queries

Figure 2. Implementation of MOA Algorithm

Figure 2 shows the implementation of MOA algorithm. The MOA algorithm has been created

to measure the performance of the system in percentile. It will help to achieve a significant
performance even in overload situation as the percentile gives the relative results.

4.3. The Transaction Manager

 The transaction manager represents a conventional database engine. It is responsible for
transaction execution, consistency check, concurrence control and native transaction logging

operations. Transactions executed by the MOA algorithm are inserted in a queue called TM queue
which is used by transaction manager to execute transactions. For each transaction extracted from
TM queue, the resource set is checked and once all the required resources obtained, the transaction

begins its execution.

The concurrency control algorithm applied by the transaction manager is two phase lock high
priority (2PL-HP) which is free from inversion priority. A concurrency controller (CC) checks and

manages the concurrency of the user transactions. The objective of a concurrency control algorithm
is to make sure operations issued by transactions are executed in an order such that the results

produced by the involved transactions are consistent.

4.4. The Performance Monitor and Logger

 The performance monitor measures the state of the system in terms of percentile feedback.

Each time a message is sent to the logger, a message is sent to the performance monitor to maintain
statistics on the metrics used by the system. Examples of useful statistics are frequency, cost and
time (functions of MOA parameters).

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 11

The logger represents the journalizing module of the real-time database system. It receives

the most relevant information to preserve on behalf of the various modules and it registers them in a
log. For example, each time total score of a transaction exceeds the threshold value, this information

is written in the log. Log information is useful to analyze overload situations.

V. PROPOSED WORK

This works aims at the overload management in real-time database systems. Real-time
systems have a finite set of resources, and hence, have a finite processing capacity. Due to the

requirement of guaranteeing temporal behavior with finite processing capacity, the real- time system
must be designed to handle peak load situations generated by the environment. The peak load is
determined both by the transaction workload and by the event load imposed on the system, since

event-triggered systems are prone to event-showers.

 In short, the scheduling problem can best be described as how to dynamically schedule

transaction workload and how to gracefully degrade system performance during overloads. The
primary criterion is that any schedule must enforce the timeliness of critical transactions requesting
resources. Secondly, any schedule should also attempt to ensure that all robustness requirements of

non-critical transactions are satisfied. Hence, the primary focus is on the transient overload situations
since these are, although hopefully infrequent, the worst threat to the primary criterion.

 The detailed internal working of the system for the purpose of overload management as in
multi-class overload architecture (MOA) has been explained in the Figure 3, using the flow diagram
of the proposed system and the implementation steps.

Implementation steps for MOA:

 MOA is demonstrated in two ways:

 Manually entering data to insert, update and delete command

 Applying MOA for select query file

 Manually entering data for insert, update and delete command

Step 1: Set the Query Threshold to some value (for e.g. 5)

Step 2: Start the query thread to execute the queries and update the database

Step 3: Apply Fuzzy Logic to get the new number of records for processing

Step 4: Check that all queries get executed by MOA on the basis of execution time

 Applying MOA for select query file

Step 1: Choose the query file which contains select statement from the folder for execution

Step 2: Read the queries and find the frequency, cost and time of each of the query

Step 3: Now find the values of Normalized Frequency, Cost and Time for calculating total score of

each of the query

Step 4: Find the threshold sum and division to get the query threshold

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 12

Step 5: Check which queries have value more than threshold, update the view for those queries

Step 6: Maintain the view to get result of Percentile Feedback

Figure 3. System Flow Diagram

VI. EXPERIMENTAL RESULTS

Initially, the query threshold is set to some value (e.g. 3). The user is allowed to insert,

update and delete data from the database up to the threshold value. For example, user inserts new
record into the tblstudents, user updates the record into the tblmarks and user deletes one record from
tblattendance. The threshold value is set to 3 and that is why stopping the further processing of the

transactions. All the three user transactions are added to the queue. As the threshold value of query is
reached, now it starts updating the database. Then all those transactions which are added to the queue

get executed. By tracking the time needed to execute the current queries and then performing more
or less queries based on the load of the database. As the previous time needed o execute the queries
is less than the current time needed to execute the queries, MOA has reduced the number of

processing queries to 2. In this way all queries are get executed by MOA.

Now apply fuzzy logic to get the new number of records for further processing. And repeat

the above process to get the new transactions executed by MOA. As MOA has reduced the number
of processing queries to 2; hence, user is allowed to do 2 transactions into the database. All the two
user transactions are added to the queue. Here, threshold value is considered to be the 2. As the

Start

MOA Model

Manually
Enter Data

Create Query
File

Insert, Update
& Delete

Statements

Update All
Queries

Apply Fuzzy
Logic

Execute All
Queries

Select
Statement

Apply MOA

Compute
Parameters:

f, c, t, sq

Calculate
Threshold

If
Query>Th

View
Maintained

View Not
Maintained

Percentile
Feedback

End

YY

NN

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 13

threshold value of query is reached, it starts updating the database. Then all those transactions which

are added to the queue get executed. By tracking the time needed between previous and current time,
more or less queries based on the load of the database are performed. As the previous time is greater

than the current time, MOA has increased the number of processing queries to 3. In this way all new
queries are get executed by MOA.

Choose a file containing select statement by applying MOA. All the queries get evaluated
based on the three parameters frequency (f) of the query, the time (t) needed to execute the query and
the memory requirement (c) of the query. After that normalized frequency (nf), normalized time (nt)

and normalized cost (ns) are computed to calculate the total score of each of the query. Now the
threshold value is calculated by considering total score of each of the query as depicted in Figure 4.

Figure 4: Transactions executed by applying MOA

As can be seen from Figure 4, after calculating the threshold value, the user is asked to

maintain the view for those queries which have total score greater than threshold value. The user has
selected the file containing six queries and from those queries, only four queries are executed. From
the four executed queries, two views are maintained on tblstudents and tblmarks, as they have

crossed the threshold value. View is maintained into the database to minimize the processing time
and for faster execution later. After maintaining the view, the result of percentile feedback is

evaluated as shown in Figure 5.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 14

Figure 5: Output Result (Percentile Feedback)

6.1. Discussion

The objective of the experiments is to show that the presented algorithm can provide
guarantee to the overload management in real-time database system. For this reason, the behavior of

the algorithm based on the set of performance metric is evaluated. In order to evaluate the
performance of the system the standard parameters considered are the query threshold, number of

views maintain, percentile feedback as compare to percentage results. This section focuses on
experimentation carried out in proposed work.

 Result Analysis

 Table 2. Experimental Results

Transactions
Query

Threshold

View

Maintained

Percentile

Feedback

Percentage

Results

Queries – 6

Executed – 4
0.92 1 25 16.66

Queries – 10

Executed – 7
0.82 5 71.42 50

Queries – 15

 Executed – 13
0.85 8 61.53 53.33

 From the above result analysis, it is seen that if 6 transactions are taken and from 6 only 4
transaction are executed then the query threshold value is 0.92. One view is maintained from the 4
executed transactions and the percentile feedback is 25. Figure 6 shows the graphical representation

of given dataset.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 15

 Figure 6. Graphical Representation of given dataset

Percentage is simply a representation of a proportion out of 100 which gives absolute results,

whereas a percentile is a statistical measure of distribution which gives relative results. For a given
set of data, it is the level below which a certain percentage of data falls. Relative results are very
important when considering the dataset in real-time database systems. By getting the results in

percentile, we can conclude if we either need or not need to make the view for the transaction,
thereby making it easier to fetch the data from the database. As the results are evaluated in terms of

percentile, views will be maintained for given set of transactions. Hence, as the views need less time
for processing as compared to the actual table, the system performance increases.

VII. CONCLUSION

The proposed approach is for managing the overload in real-time database system. The focus
is on the design of a model which defines a transactional behaviour adapted to the context of real

time. The behavioural and the structural specifications of this model involving several execution
modes for real-time transactions is an efficient solution to manage overload situations. The present
work proposes a framework for dynamically resolving transient overloads in real-time database

systems, yielding predictable behavior and graceful performance degradation during transient
overloads. The framework consists of a strategy and a scheduling architecture.

 The multi-class overload architecture (MOA) has been discussed for overload management in
real-time database system.

 MOA mainly consists of set of modules which act together in order to guarantee real-time
properties of transactions that is predictability, overload resolution and service differentiation.

 The transaction scheduler applies dispatching algorithm called MOA which is used to
schedule transaction in real-time database systems.

 MOA is suitable for multi-class scheduling and is starvation free.

 The results are evaluated in terms of percentile as the percentile gives the relative result which
is important in real-time database systems.

VIII. FUTURE SCOPE

The MOA architecture will be extended in the near future to manage quality of service for
both data and transactions. Hence, a database developer will be able to specify the requirements on

the behaviour of the database even in the presence of unpredictable workloads and overloads. Values
measured by the monitor will come to supply a quality of service manager which on the basis of the

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 16

system utilization and the values specified by the database administrator, will detect a possible

overload and will make the decision to reduce the transaction admission or to suspend it until the
system turns over in a stable state.

 We can extend the system to integrate heterogeneous databases.
 We can also add templates which contain predefined configurations used by consumers to

incorporate cloud services. The templates also include predefined database, security
configurations and load balancing.

 We can improve performance feedback by making the database in active real-time system
(ARTS) where the complete information about the workload must be known a priori.

REFERENCES

[1] J.R Haritsa, M. J. Carey, and M. Livny, "Data access scheduling in firm real -time database systems", In Journal of

RTS, Volume 4, Issue 3, pp. 203-241, 1992.

[2] A. Bestavros, and S. Braoudakis, "Timeliness via speculation for real-time databases", In Proceedings 14
th

 IEEE

RTS Symposium (RTSS‟96) , San Juan, Puerto Rico, 1996.

[3] S. Braoudakis, "Concurrency control protocols for real-time databases", PhD d issertation, Computer Science

Department, Boston University, USA, 1995.

[4] J.R Haritsa, M. J. Carey, and M. Livny, "Dynamic Real-Time Optimistic Concurrency Control", In Proceedings of

the Real-Time Systems Symposium, pp. 94-103, Dec. 1990.

[5] R. Gupta, J. Haritsa, K. Ramamritham, and S. Seshadri, "Commit processing in distributed real-t ime database

systems", In Proceedings of the 17th IEEE Real-Time Systems Symposium, pp. 220-229, Washington D.C, Dec.

1996.

[6] R. Jayant, J. Haritsa, K. Ramamritham and R. Gupta, "The PROMPT Real_Time Commit Protocol", IEEE

Transactions on Parallel and Distributed Systems , Volume 11, Issue 2, pp. 160-181, Feb. 2000.

[7] C. L. Liu, and J. Layland, "Scheduling algorithms for multiprogramming in hard real-time environments", In Journal

of the ACM, 20(1): pp. 46-61, Jan. 1973.

[8] R. Abbot, and H. Garcia-Molina, "Scheduling Real-Time Transactions: A Performance Evaluation", In Proceedings

of the 14th International Conference on Very Large Database Systems , Los Angeles, Californ ia, USA, Aug. 1988.

[9] R. Abbot, and H. Garcia-Molina, "Scheduling Real-Time Transactions with Disk Resident Data", In Proceedings of

the 15th International Conference on Very Large Database systems , pp. 385–396, Amsterdam, The Netherlands ,

Aug. 1989.

[10] J.R Haritsa, M. J. Carey, and M. Livny, "Earliest-Deadline Scheduling for Real-Time Database Systems", In

Proceedings of the 12th IEEE Real-Time Systems Symposium, San Antonio, Texas, Dec. 1991.

[11] Sang H. Son and Juhnyoung Lee, “A New Approach to Real-Time Transaction Scheduling”, In Proceed ings of the

IEEE Conference on Real-Time Systems, pp. 177-182, Jun. 1992.

[12] Ozgur Ulusoy and Geneva G. Belford, “Real-Time Transaction Scheduling in Database System”, In Proceedings of

the ACM Journal on Information Systems, Volume 18, Issue 9, pp. 559-580, Dec 1993.

[13] Y-K. Kim, M. R. Lehr, D. W. George, and S. H. Song, "A database server for distributed real-time systems: Issues

and experiences", In Proceedings of the Second IEEE Workshop on Parallel and Distributed Real-Time Systems,

1994.

[14] B. Adelberg, H. Garcia-Molina, and B. Kao, “Emulat ing Soft Real-Time Scheduling Using Traditional Operat ing

System Schedulers”, In IEEE Real-Time Systems Symposium, April 1994.

[15] B. Adelberg, H. Garcia -Molina, and B. Kao, “Applying Update Streams in a Soft Real -Time Database System”, In

Proceedings of the ACM Sigmod Record, 1995.

[16] B. Adelberg, B. Kao and H. Garcia -Molina, “Database Support for Efficiently Maintaining Derived Data”, In EDBT

Proceedings, 1996.

[17] B. Adelberg, B. Kao, and H. Garcia -Molina, "Overview of the STanford Real-Time Information Processor

(STRIP)", In SIGMOD Record (ACM Special Interest Group on Management of Data), Volume 25, Issue 1, pp. 34-

37, Mar 1996.

[18] S. F. Andler, J. Hansson, J. Eriksson, J. Mellin, M. Berndtsson, and B. Eftring, "DeeDS Towards a Distributed and

Active Real-Time Database System", In Proceedings of the ACM Sigmod Record, Volume 25, Issue 1, pp. 38-51,

Mar 1996.

[19] J. Taina, and K. Raatikainen, "RODAIN: A Real-Time Object-Oriented Database System for Telecommunicat ions",

In Proceedings of the DART‟96 workshop , pp. 12–15, 1996.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 1,Issue 6,June 2014, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 17

[20] A. Datta, S. Mukherjee, I. Viguier, and A. Bajaj, “Multiclass Transaction Scheduling and Overload Management in

Firm Real-Time Database System”, In Proceedings of the ACM Journal on Informat ion Systems, Volume 21, Issue

1, pp. 29 – 54, Mar 1996.

[21] A. Bestavros, and S. Nagy, "An admission control paradigm for value cognizant real-t ime databases", In the

Proceedings of ACM on RTSS, Proceedings of the 17
th

 IEEE Real-Time Systems Symposium, pp. 230-239, Jan

1996.

[22] J. A. Stankovic, S. H. Son, and J. Liebeherr, "BeeHive: Global Multimedia Database Support for Dependable, Real-

Time Applications", Springer Link on Active, Real-Time and Temporal Database system, Volume 1553, pp. 51-69,

1999.

[23] J. Hansson, S. F. Andler and S. H. Son, “Value-Driven Multi-Class Overload Management”, In the Proceedings of

6
th

 Conference on Real-Time Computing Systems and Applications, pp. 21-28, 1999.

[24] K.-D. Kang, S. Son, and J. Stankovic, "Service Differentiation in Real-Time Main Memory Databases", In the

Proceedings of 5th IEEE International Symposium on Object-Oriented Real-Time Distributed Computing, pp. 119-

128, 2002.

[25] G. C. Buttazzo, “Hard Real-Time Computing Systems – Predictable Scheduling, Algorithms and Applications”,

Kluwer Academics Publishers, 2002.

[26] A. Cervin, J. Eker, B. Bernhardsson, and K. Arzn, “Feedback-feedforward Scheduling of Control Tasks”, In

Proceedings of the Journal on Real-Time Systems, 2002.

[27] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bigus, “Using Control Theory to Achieve Service

Level Objectives in Performance Management”, In Proceedings of the Journal on Real-Time Systems, 2002.

[28] M. Amirijoo, J. Hansson, S. H. Son, “Error-driven QoS Management in Imprecise Real-Time Databases”. In

Proceedings of 15th Euromicro Conference on Real-time Systems (ECRTS'03), 2003.

[29] M. Amirijoo, J. Hansson, S. Gunnarrson, S. H. Son, “Robust Quality Management for Differentiated Imprecise Dat a

Services”, In Real-Time Systems Symposium, 25th IEEE International, pp. 265-275, 2004.

[30] Mehdi Amirijoo, Nicolas Chaufette, Jorgen Hansson, Sang H. Son and Svante Gunnarsson, “Generalized

performance management of multi-class real-time imprecise data services”, In the Proceedings of 26
th

 IEEE

International Symposium on Real-Time Systems, pp.12-49, 2006.

[31] M. Amirijoo, J. Hansson, and S. Song, "Specification and Management of QoS in Imprecise Real-Time databases",

In Proceedings of the IEEE Transactions on Computers, Volume 55, Issue 3, pp. 304-319, Mar 2006.

[32] Leila Baccouche, “An Overview of MOA, a Multi-Class Overload Architecture for Real-time Database Systems:

Framework and Algorithms”, In Proceedings of the IEEE Conference on Computer Systems and Ap plications, pp.

756-763, 2006.

[33] R. K. Mishra and Dr. U. Shanker, “Overload Management and Admission Control in Real Time Distributed

Database Systems”, IJCST, Vol. 3, Issue 2, pp. 29-34, June 2012.

