
 International Journal of Advance Engineering and Research
Development

Volume 3, Issue 1, January -2016

@IJAERD-2016, All rights Reserved 269

Scientific Journal of Impact Factor (SJIF): 3.134
e-ISSN (O): 2348-4470
p-ISSN (P): 2348-6406

Survey on approaches to secure SSO mechanism

Nidhi Thacker
1
,

Prof. Gordhan B. Jethava

2

1
Department of Computer Engineering, PIET, Vadodara

2
Department of Information & Technology, PIET, Vadodara

Abstract — Internet and web applications have grown exponentially and have become an essential part of day-to-day

living. But level of security that this Internet provides has not grown as fast as the Internet applications. As web

applications become more and more widespread, users must handle an increasing number of authentication credentials to

establish security contexts with web applications. Single Sign-On Mechanism is the most popular authentication

mechanism and is used by most of companies now a days. There are many single sign-on protocols available for

implementing it. These single sign-on protocols suffer from an authentication flaw that allows a malicious service provider

to impersonate the user. In this survey paper, these types of attacks on single sign-on are explained and also approaches to

prevent these attacks are explained with advantages, disadvantages and future scope.

Keywords- Single Sign-On, XSS, OpenID, SAML, MTM, Relying Party

I. INTRODUCTION

With wide spreading of distributed computer networks, it has become popular to allow users accessing various

network services offered by distributed service providers [1], [2]. Consequently, user authentication (also called user

identification) [3], [4] plays a crucial role in distributed computer networks to verify if a user is legal and then can be

granted to access the services requested.

The goal of a single sign on platform is to eliminate individual sign on procedures by centralizing user

authentication and identity management at a central identity provider. Therefore, users are relieved from the huge burden

of registering many online accounts and remembering many passwords.

Single sign-on (SSO) is an authentication mechanism that uses a single action of authentication to permit an

authorized user to access all related, but independent software systems or applications without being prompted to log in

again at each of them during a particular session [5]. Once the user login, the SSO system generates authentication

information accepted by the various applications and systems. SSO helps in reducing password fatigue from different user

name and password combinations and IT costs due to lower number of IT help desk calls about passwords. SSO is used by

Google, Facebook and in many commercial firms and educational institutes. There are single sign-on protocols which are

used to implement single sign on solution.

As SSO is advantageous still SSO protocols are suffering from authentication flaws by malicious service

providers which will impersonate the user. So user privacy is sometimes at risk. To prevent these flaws there are many

approaches are available and these approaches is working towards securing single sign-on mechanism.

The rest of this paper is organized as follows. Section II presents basic operation of single sign-on mechanism..

Section III presents possible attacks on SSO. Approaches to secure SSO are discussed in section IV. Section V presents

comparison of different approaches for security of SSO. Conclusion is presented in section VI.

II. WORKING OF SSO

Fig. 1 shows basic operation involved in Single Sign-On mechanism. It includes different domains like

authentication domain and others are secondary domains. In authentication domain user will send request to access any

application to secondary domain. In the authentication domain, SSO application is running. So whenever the use’s request

is arrived host of the application will refer SSO application for authentication. Then user is asked for credentials and then

valid user is authenticated and authentication information is transferred to that application’s domain. Host will verify and

then give access to user to that application. Now if user wants to access another application which is already registered

with SSO application then directly user can access that application. Due to SSO user need not to log in again to that

application during particular session.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 3, Issue 1, January -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2016, All rights Reserved 270

SSO basically depends on other infrastructures like authentication system, requires interface with web server and

identity management or registration. The SSO application maintains a session or Ticket Granting Ticket (TGT) for user.

So for another application login, SSO application directly transfers this ticket to that domain. For example Google is

providing Google apps service which is based on SAML Single Sign-On. Using the SAML model, Google acts as the

service provider and provides services such as Gmail and Start Pages. Google partners act as identity providers and control

usernames, passwords and other information used to identify, authenticate and authorize users for web applications that

Google hosts [9].

 Figure 1. Basic operation of SSO

III. POSSIBLE ATTACKS ON SSO

3.1 Man-in-the-middle attack by malicious relying party

A malicious web site pretends to be benign and initiates the SSO process, i.e., an attacker simply sends a request using the

application ID of the benign website to spoof the identity of it. Man-In-The-Middle Attack by a Malicious Relying Party in

which a malicious RP could send an authentication response that has been issued for the RP to another RP to impersonate

an end user even if TLS is utilized [8].

3.2 Cross-Site Scripting(XSS) attack

In a typical XSS attack, a hacker inject his malicious JavaScript code in the legitimate website. When a user visit the

specially crafted link, it will execute the malicious JavaScript. This vulnerability will allow attackers to do phishing

attacks, steal accounts and even worms. Access tokens can be stolen on most (91%) of the evaluated RPs, if an adversary

could exploit an XSS vulnerability on any page of the RP web site. A Cross-Site Scripting attack that have been identified

in the SAML-based SSO for Google Apps and in the SSO available in Novell Access Manager v.3.1 [6].

IV. APPROACHES TO SECURE SSO

Possible approaches to preserve privacy using single sign-on mechanism are divided into two categories:

4.1 Approaches to prevent man-in-the-middle attack by malicious relying party

4.1.1 Establishing a dedicated bidirectional communication channel between Relying Party (RP) and Identity

Provider (Idp)

This approach is actually practically relevant in solving a pressing problem in the area of user authentication, privacy, and

web security. The life-cycle of a bidirectional, authenticated, secure communication channel is over the following three

steps: (i) establishing the channel, (ii) using the channel to communicate securely, and (iii) destroying the channel. In

establishing a channel it uses javascript socket to communicate and execute handshake protocol during particular session.

After establishing the channel it is used to send and receive messages between client-side RP and client-side Idp. In the

process of destroying a channel, socket.close() is called. When either the IdP or RP calls the close method, the other side is

notified and must close the channel as well.Using single sign-on mechanism all different RPs will communicate with

proxy and proxy will communicate with legacy Idp [10].

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 3, Issue 1, January -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2016, All rights Reserved 271

4.1.2 On Cryptographically Strong Bindings of SAML Assertions to Transport Layer Security

One approach is to bind the SAML assertion and the SAML artifact to the public key contained in a TLS client certificate.

Another approach is to strengthen the Same Origin Policy of the browser by taking into account the security guarantees

TLS gives. By binding the SAML assertion to cryptographically derived values of the TLS session that has been agreed

upon between client and the service provider, this approach provides anonymity of the browser while allowing Relying

Party and Identity Provider to detect the presence of a man-in-the-middle attack. The idea is the following: If the browser

adds a value derived from the master secret of a certain TLS session to his SAML Assertion request, and if this derived

value is present in the SAML assertion, the RP may deduce that the other endpoint of the current TLS channel (i.e. the

browser) requested this assertion from the Idp [11].

4.2 Approaches to prevent Cross Site Scripting (XSS) attack on single sign-on

4.2.1 Applying Pattern Filtering Approach

Various approaches to defend against attacks (that use XSS vulnerabilities) are available today but no single approach

solves all the loopholes. To defend against persistent XSS attacks, a simple task has to be performed for input filtering: any

data from the input must be transformed or filtered in a way that it is not executed by a browser if sent to it. To avoid XSS

developers must sanitize the user’s input before storing it in the database.

Figure 2. Conceptual model of the persistent XSS filter [12]

The solution includes:

Filtering Event Handlers: Event handlers are JavaScript codes that are not added inside the <script> tags, but rather

inside the HTML tags and when any event occurs, the function that is assigned to an event handler runs.

Filtering Data URI: Data URI is a self-contained link that contains document data and metadata entirely encapsulated in

the URI.’data’ URI, being entirely self-contained, does not include a filename. The use of some keywords in the user input

has been blacklisted in web application - keywords like for instance, JavaScript, alert, script, round brackets, double

quotes, and colon.

Filtering insecure keywords: An insecure keyword is in a list of known bad data to block illegal content from being

executed. then, will be removed or repla Some of the insecure keywords are document.cookie, document.write,

window.location, innerHTML, parent Node <applet, <embed, <script.

Filtering Character Escaping: Preventing XSS attacks means to substitute every special character used in these attacks

Method is to escape dangerous characters by using the &# sequence followed by its character code.

4.2.2 Encoding HTML responses

To help prevent XSS attacks, an application needs to ensure that all variable output in a page is encoded before being

returned to the end user. Encoding variable output substitutes HTML markup with alternate representations called entities.

The browser displays the entities but does not run them. For example, <script> gets converted to <script>. When a

web browser encounters the entities, they will be converted back to HTML and printed but they will not be run [13].

4.2.3 Server-side approach using reverse proxy

This approach is presented to protect users against XSS attacks that offers the same level of protection as previous work

done to prevent XSS attack, but without the necessity for client-side modifications. To avoid the disadvantage of involving

the enduser, a Web browser is positioned on a reverse proxy and XSS filter before the server.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 3, Issue 1, January -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2016, All rights Reserved 272

Figure 3. Architecture for preventing Cross-Site Scripting in Server Side [14]

A JavaScript detection component, which, given the Web server’s response and request, is capable of determining whether

script content is present or not. A reverse proxy installed in front of the Web server, which is used to getting incoming

HTTP request parameter from the user and outgoing HTTP response parameter from the server and subjects them to

analysis by the JavaScript detection component. A XSS filter component, which is used to clean harmful script from the

HTTP request and HTTP response. A HTML Input filter component is located in front of servlet component ,which is used

to inspect escape comments, balance HTML tags, remove blanks space, protocol attributes from the incoming HTTP

request and encode this parameter. A Data Access Object (DAO) component, by using data access objects instead of

accessing the data source directly, the type and implementation of the actual data source is decoupled from its usage. This

allows moving from one data source to a different data source without having to change the business logic.

4.2.4 Noncespaces: Using randomization to defeat cross-site scripting attacks

Noncespaces, a technique that enables web clients to distinguish between trusted and untrusted content to prevent

exploitation of XSS vulnerabilities. Using Noncespaces, a web application randomizes the (X)HTML tags and attributes in

each document before delivering it to the client. As long as the attacker is unable to guess the random mapping, the client

can distinguish between trusted content created by the web application and untrusted content provided by an attacker. To

eliminate the client-server semantic gap and to adapt to differing security needs, the browser enforces a configurable

security policy. The policy specifies the browser capabilities that each type of content can exercise. In this way, malicious

content injected by an attacker is restricted to the capabilities allowed to untrusted content by the policy.

Figure 4. Noncespaces overview [15]

The server delivers an (X)HTML document annotated with trust class information and a policy to the client. The client

accepts the document only if it satisfies the policy. Noncespaces is simple. The server need not sanitize any untrusted

content. This avoids all the difficulties and problems with sanitization.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 3, Issue 1, January -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2016, All rights Reserved 273

4.2.5 BIXSAN: Browser Independent XSS Sanitizer

The existing solutions to XSS attack include use of regular expressions to detect the presence of dynamic content and

client side filtering mechanisms such as Noscript and Noxes tool. The drawbacks of these solutions are low fidelity and

disallowing of benign HTML. In order to overcome these drawbacks BIXSAN, a Browser Independent XSS SANitizer for

prevention of XSS attacks is proposed. A Browser Independent XSS SANitizer. BIXSAN comprises of JavaScript Tester

(modified browser) to detect the presence of JavaScript, a Parse tree generator to avoid the anomalous behaviour of the

browser, identification of static tags for allowing benign HTML, a complete HTML parser. BIXSAN was tested on all the

popular browsers, viz., IE, Opera, Firefox and Netscape navigator. From the experiments conducted it was found to reduce

the anomalous behaviour of browser [16].

4.2.6 Complementary Character Coding Approach

A new approach to character level dynamic tainting which allows efficient and precise taint propagation across the

boundaries of server components, and also between servers and clients over HTTP. In this approach, each character has

two encodings, which can be used to distinguish trusted and untrusted data. Notably, it offers a precise protection against

persistent cross-site scripting attacks, as taint information is maintained when data is passed to a database and later

retrieved by the application program. In this approach, two encodings are used for each character, standard characters and

complement characters. Untrusted data coming from users is encoded with complement characters, while trusted developer

code is encoded with standard characters. Components are modified to enforce security policies, which are characterized

by sets of allowed tokens, for which user input characters should not be permitted. Each complement aware component

enforces its policy by using full comparison to match sensitive tokens during parsing. Elsewhere they use value

comparison to preserve functionality [17].

4.2.7 SWAP (Secure Web Application Proxy)

SWAP (Secure Web Application Proxy), a server-side solution for detecting and preventing cross-site scripting attacks.

SWAP comprises a reverse proxy that intercepts all HTML responses, as well as a modified Web browser which is utilized

to detect script content. SWAP can be deployed transparently for the client, and requires only a simple automated

transformation of the original Web application. SWAP operates on a reverse proxy, which relays all traffic between the

Web server that should be protected and its visitors. The proxy forwards each Web response, before sending it back to the

client browser, to a JavaScript detection component, in order to identify embedded JavaScript content. In the JavaScript

detection component, SWAP puts to work a fully functional, modified web browser, that notifies the proxy of whether any

scripts are contained in the inspected content. If no scripts are found, the proxy decodes all script IDs, effectively restoring

all legitimate scripts, and delivers the response to the client. If the JavaScript detection component, on the other hand,

detects a script, SWAP refrains from delivering the response, but instead notifies the client of the attempted XSS attack.

The proxy prevents each malicious response from being delivered to the client, and thus effectively inhibits the attack to be

carried out on the client’s browser [18].

V. COMPARISON OF APPROACHES

Approach Advantage Disadvantage Future Scope

Dedicated bidirectional

communication channel

between RP & Idp

Authentication

latency is less. It is

safe from malicious

RP.

With an overall small

latency overhead of

about 650ms, and a

clear bottleneck in

this prototype

implementation in the

generation of the

private and public

key is there.

Overhead of communication channel is

still not considered.

This approach can be used without the

need of SSL.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 3, Issue 1, January -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2016, All rights Reserved 274

Bindings of SAML

Assertions

This provides

anonymity of the

browser so RP and

Idp can know about

man-in the middle

attack.

This approach

assumes that some

RP process only self-

signed certificates.

It can be applied to email protection or

secure HTTP cookies.

Pattern filtering

approach

Filtering of insecure

keywords, event

handlers, URIs, etc

are done in this

method.

Proper escaping

mechanisms should

be used at the right

places.

This approach can also be applied to

non-persistent and other types of XSS

attack.

Encoding HTML

responses

Web browser itself

will identify entities

and convert to HTML

and then will not

allow to run.

This approach is

limited to some

specific entities.

More markups can be added and make

more generalized.

Reverse Proxy This approach does

not involve client

side modifications.

Reverse proxy should

be placed before XSS

Filter and should be

maintained.

This proxy can be provided in-built with

the system.

Noncespaces Policy is used to

restrict content

injected by attacker.

Specific policy for

injected contents

should be described.

This approach can be improved using

other randomization techniques.

BIXSAN This provides

solution with high

fidelity and allows

benign HTML to run.

This approach is

limited to some web

browsers.

This approach can be used with Google

chrome web browser.

Complementary

Character Coding

Taint information is

maintained when data

is passed to a

database then can be

retrieved back.

2% of worst case

overhead is there.

This solution can be extended to use

complementary Unicode.

SWAP SWAP can be

deployed

transparently for the

client, and requires

only a simple

automated

transformation of the

original Web

application.

The solution is

limited to JavaScript.

SWAP can be used in current browsers

and SWAP performance can be

improved.

VI. CONCLUSION

Single sign-on is an authentication mechanism and the goal of a single sign on platform is to eliminate individual sign on

procedures by centralizing user authentication and identity management at a central identity provider. Due to increasing

use of single sign-on mechanism in most companies, more and more research work is done by different researchers in

many different directions. From last many years, research on prevention of authentication flaws on single sign-on is done.

The different approaches for preventing security attacks on single sign-on are discussed in this work. A brief comparison

of prevention approaches with its advantages, disadvantages and future scope are explained.

REFERENCES

[1] A. C. Weaver and M. W. Condtry.”Distributing Internet services to the network’s edge.” IEEE Trans. Ind. Electron.,

50(3): 404-411, Jun. 2003.

[2] L. Barolli and F. Xhafa. “JXTA-OVERLAY: A P2P platform for distributed, collaborative and ubiquitous computing.”

IEEE Trans. Ind. Electron., 58(6): 2163-2172, Oct. 2010.

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 3, Issue 1, January -2016, e-ISSN: 2348 - 4470, print-ISSN: 2348-6406

@IJAERD-2016, All rights Reserved 275

[3] L. Lamport,. “Password authentication with insecure communication. Commun.”, ACM, 24(11): 770-772, Nov. 1981.

[4] W. B. Lee and C. C. Chang.”User identification and key distribution maintaining anonymity for distributed computer

networks”. Computer Systems Science and Engineering, 15(4): 113-116, 2000.

[5] V. Radhaa, D. Hitha Reddya. “A Survey on Single Sign-On Techniques”, Procedia Technology 4 (2012 134 – 139

2212-0173 © 2012 Published by Elsevier Ltd. doi: 10.1016/j.protcy.2012.05.019 C3IT-2012

[6] Alessandro Armando, Roberto Carbone, Luca Compagna Jorge Cuellar,Giancarlo Pellegrino, and Alessandro Sorniotti,

“ From Multiple Credentials to Browser-based Single Sign-On: Are We More Secure?”, Springer(2011)

[7] David Orrell, Eduserv Athens EuroCAMP. “Authentication Systems and Single Sign-On (SSO)”, 7-9 November 2005,

Porto, Portugal

[8] Yuto Iso Graduate School of Meiji University, Japan, Takamichi Saito Meiji University, Japan, “ A Proposal and

Implementation of an ID Federation That Conceals a Web Service from an Authentication Server”, (2015 IEEE 29th

International Conference on Advanced Information Networking and Applications)

[9] Creative Commons Attribution 3.0 License. “SAML Single Sign-On (SSO) Service for Google Apps”, Last updated

January 6, 2015 https://developers.google.com/googleapps/sso/saml_reference_im plementation?hl=en,

[10] Yinzhi Cao, Yan Shoshitaishvili, Kevin Borgolte, Christopher Kruegel, Giovanni Vigna, and Yan Chen, “Protecting

Web-Based Single Sign-on Protocols against Relying Party Impersonation Attacks through a Dedicated Bi-directional

Authenticated Secure Channel”, A. Stavrou et al. (Eds.): RAID 2014, LNCS 8688, pp. 276–298, 2014, Springer

International Publishing Switzerland 2014

[11] Florian Kohlar, J¨org Schwenk, Meiko Jensen, Sebastian Gajek. “On Cryptographically Strong Bindings of SAML

Assertions to Transport Layer Security”, Volume 3, Issue 4. Copyright © 2011. 16 pages, International Journal of

Mobile Computing and Multimedia Communications (IJMCMC)

[12] Imran Yusof, Al-Sakib Khan Pathan, “Preventing Persistent Cross-Site Scripting (XSS) Attack By Applying Pattern

Filtering Approach”, (2014)IEEE

[13] Usha Ladkani.” Prevent cross-site scripting attacks by encoding HTML responses”, IBM corporation 2013,30 July

2013

[14] A. Duraisamy, M. Sathiyamoorthy, S. Chandrasekar. “A Server Side Solution for Protection of Web Applications

from Cross-Site Scripting Attacks”, International Journal of Innovative Technology and Exploring Engineering

(IJITEE) ISSN: 2278 - 3075, Volume-2, Issue-4, March 2013

[15] Matthew Van Gundy, Hao Chen. “Noncespaces: Using randomization to defeat cross-site scripting attacks”,

computers & security 31(2012) 612e628, www.sciencedirect.com

[16] Sharath Chandra V. and S. Selvakumar.” BIXSAN: Browser Independent XSS Sanitizer for prevention of XSS

attacks” ACM SIGSOFT Software Engineering Notes, September 2011 Volume 36 Number 5,DOI:

10.1145/2020976.202099 http://doi.acm.org/10.1145/2020976.2020996

[17] Raymond Mui and Phyllis Frankl, “Preventing Web Application Injections with Complementary Character Coding”,

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 80–99, 2011.Springer-Verlag Berlin Heidelberg 2011

[18] Peter Wurzinger, Christian Platzer, Christian Ludl, Engin Kirda, and Christopher Kruegel, “SWAP: Mitigating XSS

Attacks using a Reverse Proxy”, SESS’09, May 19, 2009, Vancouver, Canada 978-1-4244-3725-2/09/$25.00 © 2009

IEEE

https://developers.google.com/googleapps/sso/saml_reference_im

