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ABSTRACT:  This paper describes the insight of the design & development of a Proposed Hindi Speech Recognizer based 

on the continuous density hidden Markov model (CDHMM) . Here we have proposed a new recognizer which have been used 

with continuous density hidden Markov modeling to get a proposed CDHMM Hindi Speech Recognizer. The 

multidimensional Mel frequency cepstral coefficients(MFCC) speech vectors are extracted from raw speech  for every given 

word  that are used as a sequence of observation vectors, are  uniformly segmented into 6 states . For each state  Gaussian 

Mixture Model(GMM) parameters such as a Mean(
jk ) & Covariance ( 

jk  ) matrix & number of Mixtures( 
jkC  ) are 

calculated  and simultaneously hidden Markov Model parameters such as ( , , )A B   are calculated  to prepare a GMM-

HMM  Model known as cdhmm , { , , }jk jk jkC   . Here ,Q=6, Mixture Components(K or M)=16,  The covariance  

matrix used can be full or diagonal type matrix. Investigaions are done in this paper to find the optimal number of Gaussian 

mixture components that gives maximum accuracy in the context of Hindi speech recognition system. The results of the 

experimentation have shown that Proposed CDHMM Speech Recognizer gives maximum performance when no. of Gaussian 

Mixture Model Components used is 16. This method is more powerful and efficient as compared to discrete Speech 

Recognizer 

Keywords: GMM, Mixture Components , Viterb i,  CDHMM, Speech Recognizer.  

I. INTRODUCTION 

The observations are continuous signals or vectors in some applications. Vector quantization technique may be used to 

convert a continuous signal to discrete symbols. There can be degradation in doing the discretization. In order to avoid such 

as a situation continuous observation densities may be used with HMMs. Such Markov models are known as continuous 

density Hidden Markov Models (CD HMM). A continuous observation density may be used by putting some restrictions on 

the form of model pdf. That type or form of pdf shall be used whose  re-estimation procedures are available in the literature. 

In other words we can say that a pdf may be used whose parameters may be re-estimated consistently.  

 A probability density function (pdf) for which reestimation proceeding is formulated is given below.  

 

1

( ) . ( , , )
M

j jk jk jk

k

b o C g o 


   

This is called M component Gaussian mixture density. A GMM is Gaussian Mixture Model represented by weighted sum of 

M component Gaussian densities. Where jkC  is mixture weight or coefficients of the 
thK  component in State j [1][2].  

jk  is the Mean of 
thK  component in state j . jk  is the covariance matrix of the 

thK  component in state j and the 

mixture weight jkC  satisfy the stochastic constraint so  
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 Continuous observation vector 'O' is a D d imensional continuous valued data vectors (speech vectors). Each 

component density is a Gaussian function given by  
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 A GMM is characterized by mean vectors, covariance matrix and mixture weights from all the components densities 

and is denoted by jkU  

{ , , }jk jk jkC    

 There are various types of GMMs depending upon the type of covariance matrix such as it can be full rank matrix or 

diagonal matrix.  

2 Design of GMM-HMM based s peech recognizer 

2.1 Calculation of  Forward variable alpha ''  

 The calculation of alpha ' ' the forward variable is done through  forward  algorithm described  below . In designing 

CDHMM/GMM-HMM the observation vectors are considered as continuous signals.  

 The observation symbol probability d istribution { ( )}jB b k  (discrete case) is replaced by a pdf and is given by 

( ).jB b x  Where x is a continuous observation sequence.  

 Forward Algorithm 

Let us define a forward probability ( )n jS  which is given by  

 1 2( ) ( , .. , ( ) /n j n jS P X X X S n S    

where P is the probability of observing the observation sequence 1 2, .... nX X X and being in state jS at time n g iven the 

model  .[3].   

* Initializat ion  

 ( ) 1o iS   

 ( )o j j iS o if S S    
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* Recursion 

 
1

1

( ) ( ). . ( )
S

n j n i ij j n

i

S S a b X  



  

* Termination  

 

1

( / ) ( ) ( ).
S

N E N i iE

i

P X S S a  


    

 The Terills diagram for forward recursion is shown in Figure 1.  

 

 

Figure 1 : Showing Forward Recursion  

2.2 Calculation of  Back ward variable ''. 

 To estimate the state occupation probabilit ies we shall define another set of probabilit ies called the backward 

probabilit ies '' and is given below  

 1 2( ) ( , , | ( ) , )n j n n N jS p X X X S n S     

 The probability of future observations given a the HMM is in state jS at time 'n'. These can be computed recursively 

going backwards in time n [3].  

Back ward Algorithm  

* Initializat ion ( )N i iES a    
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* Recursion  
1 1

1
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n i i j j n n j
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S a b X S  


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* Termination  
1 1

1

( / ) ( ) . ( ). ( ) ( )
S

o i ij j j N E

j

p X S a b X S S   


    

 The trills diagram for backward variable '' Calcu lation is shown in figure 2.  

 

Figure 2 : Showing Backward Recursion 

2.3 Viterbi Algorithm 

 We shall consider the most likely state sequence instead of summing over all possible state sequence. This can be 

estimated by just changing the summat ion to a maximization in the recursion step which is given below 

 1( ) max ( ). . ( )n j n i ij j nV S V S a b X  

 The equation clearly indicates that the likelihood of the most probable path can be achieved by changing the 

summation into a maximum in the recursion. The path or state sequence backtracking or Viterb i back trace is done via 

keeping a sequence of back pointers. The terills diagram for Viterbi recursion showing likelihood of the most probable path 

and back pointers to the previous states on the most probable path is shown in figures 3 and figure 4 respectively [3].   
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Figure 3 : Showing likelihood of the most probable path (Sequence)  

 

Figure 4 : Showing back po inters to the previous states on the most probable path. 

Algorithm 

 Initializat ion   

   

( ) 1

( )

( )

o i

o j j i

no j
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b S o
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 Recursion 
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1

1
1

( ) max. ( ). . ( )

. ( ) arg.max. ( ). . ( )
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 Termination 

    

*

1

*

1

( ) max ( ).

( ) arg.max ( ).

S

N E N i iE
i

S

N N E N i iE
i

P V S V S a

S bn q V S a





 

 

 

2.4 The Forward-Back ward Algorithm 

 The main objective here is to efficiently find out the parameters of an hidden Markov model (HMM)  from an 

observation sequence  
1 2, .... .nX X X  If we assume a single Gaussian output probability distribution which is given as 

below[39] 

 ( ) ( | ) ( , , )j j j jb x p X S g O     

 The parameter { , , }jk jk jkC   defines an hidden Markon model. The transition probability ija follows a 

stochastic constraint that is 1ij

j

a  and the Gaussian parameters for the state jS are given as j the mean vector and 

j the covariance matrix.  

 If we known the state-time alignment diagram then each observation vector could be assigned to a specific state. A 

state-time alignment diagram or terrils diagram can be easily obtained using the Viterbi algorithm thru finding the most 

probable path.  

 The maximum likelihood estimate of ija  can be done as follows.  

 If ( )i jC S S is the count of transitions from state ( )iS to state ( )jS . 

 
( )

( )

i j

ij

i kk

C S S
a

C S S





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 Likewise if jZ is the set of observed acoustic feature vectors assigned to state j we can use the standard maximum 

likelihood estimates for the mean and co variance matrix.  
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EM Algorithm 

 In Viterb i training which is an approximation we would like to consider all the possible paths. In this case we estimate the 

probability rathan than having hard time alignment. The state occupation probability is denoted by ( )n ijS which states the 

probability of occupying State jS  at time n given the sequence of observations. 

On comparing with component occupation probability in a GMM we can use this for an iterative algorithm for HMM training 

the EM algorithm. It has two steps E&M. 

E-Step: It estimates the state occupation probabilit ies E-Step is called Expectation Step.  

M-Step: It is called Maximization Step. Here the HMM parameters based on the estimated state occupation probabilit ies are 

re-estimated.  

2.5 Calculation of ( )n jS (Gamma) 

 ( )n jS  is the probability of occupying state jS at time 'n' given the sequence of observation. It is expressed in 

terms of forward ' ' and backward ' '  probabilit ies. 

  
1

( ) ( ( )) | , ( ) ( )
( )

n j j n n

N E

S P S n S X j j
S

   


    

 recalling that ( | ) ( )N Ep X S   

 Since 1 2 1 2( ) ( ) ( , ,.... , ( ) | ). ( , .... , ( ) , )n j n j n j n n N jS S p X X X S n S p X X X S n S        
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 1 2 1 2( , ... , , ... , ( ) / )n n n N jp X X X X X X S n S     

 ( , ( ) | )jp X S n S    

 
( , ( ) | )

( ) | , )
( | )

j

j

p X S n S
P S n S X

p X







   

2.6 Re-estimation of Gaussian Parameters. 

 The sum of state occupation probabilities through time n for a state ' 'jS may be called as a soft count which may be 

used to re-estimate the HMM parameters  
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2.7 Re-estimation of Transition probabilities and calculation of ''(Zie) 

 We can estimated ( , ),n i jS S the probability of being in state 
iS at time n and state jS at time 1,n  given the 

observations. 

  ( , ) ( ) , ( 1) | ,n i j i jS S P S n S S n S X      

 
 ( ) , ( 1) , | )

( | )

i jP S n S S n S X

P X





  
  

 
1 1( ). . ( ) ( )

( )

n i i j j n n j

N E

S a b X S

S

 



 
  

   The variable ' '  (zie) is used to re-estimate the transition probabilit ies as follows: 
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E-Step for all time-state pairs. Here the forward probabilities ( )n jS  and backward probabilities ( )n j are recursively 

computed. M Step based on the estimated state occupation probabilit ies re-estimate the HMM parameters mean vectors j & 

the covariance matrix j & transition probabilit ies .ija  

 The M component Gaussian mixture model is an appropriate probability function & is given by  

 

1

( ) ( | ) . ( , , )
M

j j jm jm jm

m

b x p X S C g o 


    

 We estimate the component-state occupation probabilities. ( , )n jS m is the probability of occupying mixture 

components m of state jS at time n. We may estimate the mean and co-varience of mixture components m of state jS  at 

follows. 

Mean:  
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1
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n j n

n
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s m X
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Co-varience: :  
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 The mixture coefficients or mixture weights are re-estimated as follows: 
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Figure 5 : Showing continuous density HMM Model.  

 Continuous density HMM an acoustic model is shown in the figure 5. Here the transition probabilit ies are 

( | )kj j ka P S S  and output probability density function ( ) ( ) ( | )j j jb X b X p X S and an HMM is represented by the 

parameter [ , , ]A B  . Where  ijA a and ( )&j iB b X   is in itial state distribution.   

3     Design of proposed CDHMM Hindi  S peech recognizer.  

Design Specifications of CDHMM: 

i) Observation vectors = continuous  

ii) Probability density function (pdf)= Gaussian  

iii) Number of Mixture Components (M)=16.  

iv)  No. of states (Q)=6. 

v) No. of observation Vectors in a sequence (T) = m2 .  

vi) No. of coefficients in a vector (o) = m1.  

vii) Type of Co-variance matrix used = diagonal.  

viii) Type of data used = continuous observations vectors.  

ix) Total No. o f words for which system is trained w=10.  

x) Number of utterances of each word = 5.  

A CDHMM is defined by the parameters cdhmm 

[ , , ]icdhmm A B   

i is the initial state distribution also represented by prior. A is the transition matrix .ijA a  B is the probability 

distribution  function, ( ).jb b x  It is calculated by using the formulae.  

 
1

( ) . ( , , )
M

j jk jk jk
k

b x C g x 


    
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Where jkC is the mixture weight of the K
th

 component in state j. jk  is the mean vector of the K
th

 component in state j, 

jk is the covering mixture weight satisfy the stochastic constraint 
1

1,
M

jk
k

C


            1 j N   

Where g represents the Gaussian function.  

 In order to design an isolated word speech recognizer using CDHMM concept for a vocabulary size of words 

'W'=10. We design a Q-State HMM. We represent the speech signal of a given Hindi word as a sequence of continuous 

observation vectors. A word is represented by a sequence 
1 2, .., nX X X  Here the probability of each observation vector is 

calculated by the Gaussian pdf. The data sequence 
1 2, , .... NX X X X X which is a D dimensional Mel Frequency 

Cepstral Coefficients(MFCC). The Signal modeling techniques gives an idea how speech samples can be used to generate 

observation sequence. The Mel Frequency Cepstral Coefficients  represents the best approximation of the human ear.  The 

human ear is more sensitive to higher frequencies [4]. A review on Speech recognition techniques concludes that the Mel 

Frequency Cepstral Coefficients are widely used for developing the front end of a Speech Recognizer [5][6][7]. The Speech 

vectors are uniformly segmented into Q=6 States as illustrated in figure 6. 

 

 

Figure 6 : Showing Uniform Segmentation of Data Sequence 

i) No. of mixture 'm' per State = 4 

ii) Mean Vector  1 2 3 4, , ,j j j j     

iii) Covariance Matrix 1 2 3 4, , , ,j j j j     

Design Steps 

i) Initialize each mean to a random data point  

ii) Random guessing of init ial state distribution and transition matrix 'A'  

 ,i  Init ial State distribution (Prior) 

 ijA a  Transition Matrix 

  

iii) Calculation of Gaussian parameters ( )MU and covarience  (Sigma) through initialization of each mean to 

random data point  
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 Thus for each vocabulary word, we have a train ing consisting of a number of repetition of sequences (D dimensional 

continuous observation vectors) of the word by male or female talkers. The first thing is to make individual models of each 

word. This task can be completed by using the solution to problem 3 to optimally estimate model parameters for each word 

model. The understand the physical interpretation of the number of states of a word  model we make use of the solution to 

problem 2 to segment each of the word training sequence into states and then studying the Gaussian parameters (Mean vector 

jm ) covariance jm (Sigma) and the number of mixture components 'm' per state) that leads to the observations occurring 

in each state. Our aim is her to do the model refinements such that more states and different data of continuous observation 

vectors, number of mixtures components per state etc. to improve the capability of the spoken word sequences.  

 Finally when we have developed the set of CDHMM's for W words & optimized them then the task of recognition 

of unknown word  is performed using the solution to problem to score each word model based upon the given test observation 

sequence and select the word who has the highest model score or likelihood illustrated in figure 7.  

 

 

Figure 7: Showing CDHMM Isolated Hindi Speech Recognizer.  

 

4(A) Results of the experimentation performed on CDHMM Hindi  S peech recognizer for Male Speaker (Data Set1). 

with M=16 and  Q=6 is shown in the Table 1 
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Table 1: Confusion matrix for various words spoken by Male Speaker(Data Set1). 

 Q, States=6 

M, 

Mixture=16 

  Likelihood Calculation using CDHMM 

Test Utterances 

 Train ing 

Utterances 

Hanuman Kalam Kapi Kitab Pen Pustak Raam Ravan Sita Sugriv 

1 Hanuman 

-2.7494 -5.611 

-

5.0417 -4.3934 -4.3904 -4.3773 

-

3.7954 

-

4.5096 

-

4.6061 

-

6.7809 

2 Kalam 

-3.9598 -4.458 

-

5.0477 -4.3567 -4.0794 -3.4232 -4.004 -4.199 

-

4.6498 

-

7.2015 

3 Kapi 

-3.7282 

-

5.4826 

-

2.8497 -2.8278 -3.687 -3.2371 

-

3.9974 

-

3.4654 

-

3.0811 

-

5.2268 

4 Kitab 

-5.2078 

-

6.6197 

-

4.3947 -2.7802 -5.176 -3.754 

-

5.2292 

-

4.7143 

-

3.7836 

-

6.1881 

5 Pen 

-5.8057 

-

7.1286 

-

5.8101 -6.7023 -3.0412 -4.4294 

-

5.7026 

-

5.8136 

-

4.6703 

-

6.3549 

6 Pustak 

-5.287 

-

6.0959 

-

5.2813 -5.0168 -4.6395 -2.5641 

-

5.0255 

-

4.8351 

-

3.9623 

-

7.8272 

7 Raam 

-4.2259 

-

6.3378 

-

6.1344 -4.7452 -5.1907 -5.0597 

-

3.4213 

-

4.8666 

-

5.3237 

-

8.5434 

8 Ravan 

-4.9932 

-

7.9238 

-

5.4255 -4.5099 -5.5488 -4.9309 

-

4.7341 

-

3.0251 

-

4.9129 

-

9.4172 

9 Sita 

-4.86 -7.458 

-

3.8955 -3.5213 -4.6613 -4.0002 -4.207 

-

3.9619 

-

2.5542 

-

3.8524 

10 Sugriv 

-6.2887 

-

8.7874 

-

6.2467 -6.5331 -5.2362 -4.9114 

-

7.1247 

-

6.3289 

-

4.4387 -3.541 

 

 

(B) Results of the experimentation performed on CDHMM Hindi  S peech recognizer  for male Speaker.(Data Set2) 

with M=16,Q=6  is shown in Table 2. 
 

Table 2 : Confusion matrix for various words spoken by male Speaker (Data Set2) 

 Q, States=6 

M, 

Mixture=16 

Likelihood Calculation using CDHMM 

Test utterances 

 Train ing 

utterances 

Hanuman Kalam Kapi Kitab Pen  Pustak Raam Ravan Sita Sugriv 

1 Hanuman 

-0.5184 

-

1.8749 -1.0063 

-

1.4911 

-

1.3287 

-

1.6552 

-

1.6233 

-

0.9683 

-

2.4191 -2.1865 

2 Kalam 

-1.0342 

-

0.3121 -0.7338 

-

0.5515 

-

0.7208 

-

0.9031 

-

0.7823 

-

0.8936 

-

0.7508 -0.916 

3 Kapi 

-0.8914 

-

1.1343 -0.3752 

-

0.9918 

-

0.7177 

-

0.9972 -1.279 -0.909 

-

1.5094 -1.4957 

4 Kitab 

-0.924 

-

0.6494 -0.7287 

-

0.3467 -0.674 

-

0.9001 

-

0.6967 

-

0.7727 

-

1.0119 -1.1744 

5 Pen 
-1.5243 - -0.8202 - - - -0.826 - - -1.1988 
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0.8804 0.6575 0.3399 1.0148 0.7124 1.1558 

6 Pustak 

-1.353 

-

1.1792 -0.6684 

-

0.6562 

-

0.9382 

-

0.5843 

-

1.0788 

-

1.0661 

-

1.6513 -1.7959 

7 Raam 

-0.6426 

-

0.9956 -1.0812 

-

0.8203 -1.071 

-

1.5431 

-

0.2898 

-

0.9584 

-

1.5636 -1.6113 

8 Ravan 

-1.3753 

-

1.0747 -0.9608 

-

1.0096 

-

1.1267 

-

1.6133 

-

1.2818 

-

0.6346 

-

1.7369 -2.0192 

9 Sita 

-0.8261 

-

0.6643 -0.809 

-

0.7576 

-

0.7223 

-

1.2219 

-

0.9362 

-

0.9732 

-

0.4307 -0.68 

10 Sugriv 

-1.0183 

-

0.6927 -0.804 

-

0.7176 -0.869 

-

1.0477 

-

0.9738 

-

0.8099 

-

0.6394 -0.5882 

. 

5 Results & conclusions. 

 The proposed CDHMM Hindi speech recognizer makes use of Gaussian pdf and its parameters mean vector .jm  

Here j varies between 1 j S  and the number of mixture components M=4,8,16 per state. The data set on which the 

experimentation was performed was MS (Male Speaker ,(Data Set1) and MS (Male Speaker(Data Set2) in the age group of 30 

yrs. to 50 yrs. The covariance Matrix denoted by Sigma ( 1 6& 4,8,16)jm j to m   was diagonal matrix. The results 

have shown that the Co variance matrix can be used of 'full' & diagonal type & the likelihood in both the cases as shown in 

the confusion matrix Tab le1 and Table 2 are used to recognize the unknown utterance/word. The best results were obtained 

when M=16 was used as optimal number of mixture components. 
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