
 International Journal of Advance Engineering and Research
Development

Volume 2,Issue 5, May -2015

@IJAERD-2015, All rights Reserved 1071

Scientific Journal of Impact Factor(SJIF): 3.134 e-ISSN(O): 2348-4470

p-ISSN(P): 2348-6406

Fast Analysis of Sensor Data over MapReduce using Spark

Mansi Shah
1
,

Vatika Tayal

2

1
M. Tech. Scholar, Computer Science and Engineering Department , N.S.I.T, Jetalpur, Gujarat, mnshah201@gmail.com

2
Assistant Professor, Computer Science and Engineering Department, N.S.I.T, Jetalpur, Gujarat,

vatika.sharma15@gmail.com

Abstract — Big data analysis is emerging rapidly due to the tremendous volume of data, velocity at which the data is

flowing in the organizations and the variety of data. In recent years due to the spurt in Internet of Things (IoT), data

generated by the sensors is growing exponentially thus transforming into big data. Thus data collection, processing and

extracting useful information from such increasing high velocity and high volume of sensor data poses a challenge for

the researchers. Apache Spark is an open source, a general purpose engine for rapid large -scale data processing. To

overcome the data replication and disk I/O overhead of sharing data between parallel operations in Hadoop, Spark uses

the primitive called Resilient Distributed Datasets (RDD’s) which provides the programmers a fault tolerant and in -

memory data storage across cluster nodes without replication that increases the processing speed of the applications to

several magnitudes. We propose a method to analyze the sensor data using the Spark.

Keywords- big data, Resilient Distributed Datasets, Spark , MapReduce, Hadoop

I. INTRODUCTION

In this electronic era due to the spurt in the volume of d igital and social media as well as Internet-of-Things (IoT) the

amount of data generated by sensor networks has increased enormously. Extracting knowledge from sensor data can be

used for proactive maintenance, improving reliab ility, reducing heating and cooling expenses, product monitoring, reduce

unplanned service work and so on. Big data is the collection of data sets so large and complex that it becomes difficu lt to

process those using conventional tools or applications. The three attributes that characterize b ig data are velocity,

volume, and variety. The prime challenge with Big Data includes extract, search, storage, retrieval, analysis and

visualizat ion of data. Big Data analysis focusses to process data that is massive, unstructured, speedy and extracting

useful and hidden informat ion from it
[1]

Google’s MapReduce became the most popular framework to process rapidly enormous amounts of data in parallel on

large clusters of machines. However, Hadoop/MapReduce is designed for batch processing of huge volumes of data but

is not optimized for iterative computations, interactive mining and stream processing due to redundant and wasteful

processing
[2]

In this paper, we propose a method to analyze sensor data over distributed data processing engine Spark that is faster than

Hadoop MapReduce.

II. EXIS TING METHOD AND LIMITATIONS

Hadoop is an open source framework fo r writing and running distributed applications which are capable of batch

processing large sets of data. Hadoop framework is mainly known for MapReduce and its distributed file system

(HDFS)
[12]

 MapReduce is a programming model that enables large-scale and distributed processing of big data on a set of

commodity machines. MapReduce defines the computation as two functions: map and reduce. The input is a set of

key/value pairs, and the output is a list of key/value pairs. The reduce function takes an interme diate key and a list of

intermediate values associated with that key as its input, and results set of final key/value pairs as the output.

However, Hadoop/MapReduce is designed for batch processing of huge volumes of data but is not optimized for iterat ive

computations, interactive min ing and stream processing due to redundant and wasteful processing
[2].

The main p roblem is

that both iterative and interactive applications need data sharing across mult iple MapReduce steps. In MapReduce the

data sharing between parallel operations is done by writ ing the intermediate results to distributed file system HDFS

which adds overhead due to disk I/O, redundant and wasteful processing and data replication
[3]

. It also suffers from

various Configuration and Automation is sues which require numerous configuration parameters to set when deploying a

Hadoop MapReduce cluster. These Programming Model issues makes it unsuitable for machine learn ing algorithms and

graph processing which often require iterations or incremental computations
[4].

III. SYSTEM OVERVIEW

mailto:vatika.sharma15@gmail.com

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 2,Issue 5, May -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 1072

Apache Spark is an open source in-memory cluster computing framework for fast and flexible large-scale data analysis

initially developed in the AMP Lab at UC Berkeley. Spark is built on the top of Hadoop Distributed File System, but

instead of using Hadoop MapReduce, it depends on its own parallel data processing framework which starts by placing

data in Resilient Distributed Datasets (RDDs), a distributed memory abstraction that executes calculations on huge

clusters in a fau lt tolerant way. Spark also adds flexibility to its speed by providing APIs that permits developers to write

queries in Java, Python or Scala
[5]

The Spark working architecture is depicted in Figure 1. The Spark cluster consists of a driver program where the

execution of application logic is started with several workers that process data in parallel. Even though this is not

mandated, data are typically collocated with the worker and partit ioned across the same set of commodity machines

within the cluster. The driver programs will pass the code to the worker machine during execution where the processing

of the corresponding partition of data will be conducted. To elude data shuffling across machines, the data will go

through different steps of transformat ion while remain ing in the same part ition as much as possible. Actions will be

executed at the workers and the final result is then returned back to the driver program
[6]

Figure 1. Spark Working Architecture

3.1. Spark Programming Interface

The key concept in Spark is Resilient Distributed Datasets (RDDs), which are immutable, fault-tolerant collections of

objects distributed across cluster nodes which can be operated on in parallel. RDDs are created by users by implementing

operations known as transformations, such as map, filter and group in a durable storage system. Controlling how various

RDD’s are co-partitioned (with the same keys) across commodity machines can decrease inter-machine shuffling of data

within a cluster
[7] [8]

.

Tasks

Tasks

Tasks

RAM

RAM

RAM

Cache

Cache

Cache

RDD

PARTITION 2

RDD

PARTITION 3

RDD

PARTITION 1

Spark Master

Driver

Cluster

Manager

Spark

Worker

Spark

Worker

Spark

Worker

http://en.wikipedia.org/wiki/UC_Berkeley

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 2,Issue 5, May -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 1073

Spark provides a partition operator which produces a new RDD by redistributing the data in the original RDD across

machines within the cluster. RDD can optionally be cached in RAM and therefore provid ing faster access. Presently, the

granularity of caching is implemented at the RDD level, either the complete or none of the RDD is cached. Spa rk will t ry

to cache the RDD if and only if sufficient memory is available in the cluster, depending on the LRU (Least Recently

Used) eviction algorithm.RDD presents an abstract data structure from which the application logic can be depicted as a

series of transformation processing, without being concerned about the intrinsically distributed nature of the data. The

application logic is typically depicted in terms of a series of TRANSFORMATION and ACTION
[6].

Transformation takes an input RDD and creates a new RDD. When transformation function is called, nothing gets

calculated. Action computes and returns a new value to the program or writes the output to the external stable storage

system.When the action operation is executed by the user; the scheduler will build a DAG of stages to execute by

examining the RDD’s lineage graph
[6]

.

IV. SENSOR DATA ANALYS IS FLOW

The flowchart of sensor data analysis is shown in Figure 2. First sensor data is loaded from a file into the Spark

framework, mapped to RDD’s. The data is filtered and temperature parameter is extracted from the available data using

RDD transformation. We then apply RDD Map transformation to generate key -value pairs based on if-else rules. Finally

RDD reduce transformat ion is applied on the key-value pairs to produce an aggregated final result which is saved to the

local file system using RDD action. The result gives the count of the readings with and without Normal temperature for

each area in the lab as well as sensor readings not satisfying the rules. We also calculate the accuracy of the rules.

Figure 2. Data Analysis flow

V. EXPERIMENTS AND RES ULTS

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 2,Issue 5, May -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 1074

The sensor dataset used in this experiment is generated by 54 sensors deployed in the Intel Berkeley Research Lab. The

frameworks used for analysis are Spark (0.9.0-incubating) and Hadoop (0.20.2). Below is the table of the different

number of the data and the file size of the data that we analyzed using the Spark. The results we obtained are mentioned

in the Tab le 1. And the performance comparison of Spark and Hadoop is shown in Figure 3. The performance of the

developed system depends strongly on the machine it is installed on. CPU, Memory Usage and Disk I/O.

Table 1. Experimental results of Hadoop and Spark

Data Size

File Size
Execution Time

Hadoop Spark

10,000 634KB 48 Sec. 20 Sec.

100,000 6.25MB 55 Sec. 23 Sec.

1,000,000 64.3MB 106 Sec. 39 Sec.

Figure 3. Performance comparision of Hadoop and Spark

VI. CONCLUS ION

Big Data is an emerg ing field because today the data is generated in huge volume, at a fast velocity with variant types.

Owing to machine-to-machine communication and Internet of Things based wireless sensor networks the amount of data

generated by sensors has increased enormously. Initially, the knowledge ext raction from the sensor data was easy as the

number of wireless sensor networks were limited. But as the sensor networks and applications grow capturing, managing

and analyzing the increasingly high volumes and high-velocity sensor data become a challenge by the existing systems.

So there is a need to introduce new approaches which will process and analyse such large volume of sensor data at a

faster speed. In this paper we have proposed a method of implementing ru le based classificat ion on distributed sys tems

using Spark. Also, by using Spark framework the system memory is fully utilized, which leads to better performance than

Hadoop.

ACKNOWLEDGEMENT

We would like to thank the Intel Berkeley Research Lab
 [9]

 for providing us the sensor dataset.

REFERENCES

International Journal of Advance Engineering and Research Development (IJAERD)

Volume 2,Issue 5, May -2015, e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

@IJAERD-2014, All rights Reserved 1075

[1] Rabi Prasad Padhy, “Big Data Processing with Hadoop-MapReduce in Cloud Systems”, International Journal of

Cloud Computing and Services Science (IJCLOSER), February 2013, vol.2, No.1, 16 -27.

[2] Saeed Shahrivari, “Beyond Batch Processing: Towards Real-Time and Streaming Big Data”, Computer 2014.

[3] Matei Zaharia; Mosharaf Chowdhury; Tathagata Das; Ankur Dave; Justinma; Murphy Mccauley; Michael J; Scott

Shenker; Ion Stoica , “Fast and Interactive Analytics over Hadoop Data with Spark” , Usenix, pp. 45 -51 Aug 2012.

[4] Vasiliki Kalavri, Vladimir Vlassov,” MapReduce: Limitat ions, Optimizat ions and Open Issues”, 12th IEEE

International Conference on Trust, Security and Privacy in Computing and Communication, 2013, pp. 1031-1038,

doi: 10.1109/TrustCom.2013.126.

[5] Spark as a Service. [Online]. Availab le: http://www.qubole.com/resources/articles/hadoop-spark/

[6] Spark: Low latency, massively parallel processing framework. [Online]. Availab le:

http://horicky.blogspot.in/2013/12/spark-low-latency-massively-parallel.html

[7] Jie Deng, Zhiguo Qu, Yongxu Zhu, Muntean, Gabriel-Miro, Xiao jun Wang, “Towards Efficient And Scalable Data

Mining Using Spark”, Information and Communications Technologies (ICT 2014), 2014 International Conference,

pp. 1-6.

[8] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica,

“Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing”, Proceedings of the 9th

USENIX conference on Networked Systems Design and Implementation, 2012.

[9] Intel Lab Data. [Online]. Availab le: http://db.csail.mit.edu/labdata/labdata.html

