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Abstract— The aim of paper is to analyze few algorithms of the 0/1 Knapsack Problem. This 

problem is a combinatorial optimization problem in which one has to maximize the benefit of 

objects without exceeding capacity. As it is an NP-complete problem, an exact solution for a 

large input is not possible. Hence, paper presents a comparative study of the Greedy and 

dynamic methods. It also gives complexity of each algorithm with respect to time and space 

requirements. Our experimental results show that the most promising approaches is dynamic 

programming.  
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I. INTRODUCTION 

 

 The Knapsack Problem is an example of a combinatorial optimization problem, which seeks 

for a best solution from among many other solutions. It is concerned with a knapsack that has 

positive integer volume (or capacity) V. There are n distinct items that may potentially be 

placed in the knapsack. Item i has a positive integer volume Vi and positive integer benefit Bi. 

In addition, there are Qi copies of item i available, where quantity Qi is a positive integer 

satisfying 1 <= Qi <= Infinity. Let Xi determines how many copies of item i are to be placed 

into the knapsack. The goal is to: 

Maximize 

 
Subject to the constraints 

 
And 

 
 

If one or more of the Qi is infinite, the KP is unbounded; otherwise, the KP is bounded 
[1]

. 

The bounded KP can be either 0-1 KP or Multiconstraint KP. If Qi = 1 for i = 1, 2, …, N, the 

problem is a 0-1 knapsack problem In the current paper, we have worked on the bounded 0-1 

KP, where we cannot have more than one copy of an item in the knapsack
[1]

. 

  

II. DIFFERENT APPROACHES TO PROBLEM 

1) Greedy Approach 
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A thief robbing a store and can carry a maximal weight of w into their knapsack. There are n 

items and i
th

 item weigh w i and is worth vi dollars. What items should thief take? This 

version of problem is known as Fractional knapsack problem. 

The setup is same, but the thief can take fractions of items, meaning that the items can be 

broken into smaller pieces so that thief may decide to carry only a fraction of  xi of item i, 

where 0 ≤ xi ≤ 1
[2][3]

. 

2) Dynamic Approach 

Again a thief robbing a store and can carry a maximal weight of w into their knapsack. There 

are n items and ith item weigh w i and is worth vi dollars. What items should thief take? This 

version of problem is known as 0-1 knapsack problem. 

The setup is the same, but the items may not be broken into smaller pieces, so thief may 

decide either to take an item or to leave it (binary choice), but may not take a fraction of an 

item
[2][3]

. 

 

III. GREEDY ALOGRITHM 

 

George Dantzig proposed a greedy approximation algorithm to solve the unbounded 

knapsack problem.
[1]

 His version sorts the items in decreasing order of value per unit of 

weight, . It then proceeds to insert them into the sack, starting with as many copies as 

possible of the first kind of item until there is no longer space in the sack for more. Provided 

that there is an unlimited supply of each kind of item, if  is the maximum value of items 

that fit into the sack, then the greedy algorithm is guaranteed to achieve at least a value 

of . However, for the bounded problem, where the supply of each kind of item is 

limited, the algorithm may be far from optimal
[4]

. 

 

Pseudo code for greedy knapsack algorithm is given below. 

 

Input: v- array of values, w-array of weights, c-capacity 

Output:  Profit of Knapsack 

 

1. Load <- 0 

2. i<-1 

3.    while load < c and I <= n 

4.      do  if wi < c – load 

5.         then take all item i 

6.      else take (c – load) /wi of item i 

7.  i<-i+1 

 

III. DYNAMIC ALGORITHM 

A similar dynamic programming solution for the 0/1 knapsack problem also runs in pseudo-

polynomial time. Assume  are strictly positive integers. 

Define  to be the maximum value that can be attained with weight less than or equal 

to  using items up to 
[5]

. 

We can define  recursively as follows: 

http://en.wikipedia.org/wiki/George_Dantzig
http://en.wikipedia.org/wiki/Greedy_algorithm
http://en.wikipedia.org/wiki/Approximation_algorithm
http://en.wikipedia.org/wiki/Knapsack_problem#cite_note-dantzig1957-20
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  if  (the new item is more than the current weight 

limit) 

  if . 

The solution can then be found by calculating . To do this efficiently we can use a 

table to store previous computations. 

 

Pseudo code for dynamic knapsack algorithm is given below. 

 

Input:  {w1
 
,w2,

  . . . 
wn 

 
}, W

 
, {b1

 
,b2,

  . . . 
bn 

 
}  

Output: B[n, W] 

 

1. for w  0 to W do // row 0 

2.     B[0,w]  0  

3. for k  1 to n do // rows 1 to n 

4.     B[k, 0]  0  // element in column 0 

5.     for w  1 to W do  // elements in columns 1 to W  

6.     if (wk  w) and (B[k-1, w- wk
 
] + bk

  
> B[k-1, w])  

7.        then  B[k, w]  B[k-1, w- wk
 
] + bk

 
 

8.      else
 
B[k, w]  B[k-1, w]

 
 

 

IV. RESULTS 

Implemented knapsack problem with different values of weight and profit or value in Turbo 

C. 

If we consider a data value is w={1, 2, 5, 6, 7}, v={1, 6, 18, 22, 28} and Carrying capacity 

W= 11 then output of greedy is: 

  

 

 
 

Fig. 1 Solved by Greedy approach 
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Same data values and solving by Dynamic programming. 

 

 
 

Fig. 2 Solved by Dynamic programming 

After implemented knapsack problem in c programming for different values of weight and 

profit. Result of both methods gives optimal solution and time . 

 

Method Input Data Capacity Profit Time 

Greedy 

W={2,3,4,5}  

 V={3,4,5,6} 

9 12 16.86 

W={1,2,5,6,7} , 

V={1,6,18,22,28} 

11 42.67 28.73 

W={10,20,30,40,50} 

V={10,30,66,50,60} 

100 158 26.68 

Dynamic 

W={2,3,4,5}  

 V={3,4,5,6} 

9 12 12.69 

W={1,2,5,6,7} , 

V={1,6,18,22,28} 

11 40 17.47 

W={10,20,30,40,50} 

V={10,30,66,50,60} 

100 156 19.65 

 

Table 1. Comparison of Greedy and Dynamic with different values. 
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  Fig 3(a)       Fig 3(b) 

 

 

 
      Fig 3(c) 

Fig 3 (a, b, c) Comparison of greedy and dynamic  

 
V. CONCLUSION 

In this paper we conclude that for particular one knapsack problem we can implement two 

methods greedy and dynamic. But when we implemented both method for different dataset 

values then we notice something is like, we consider comparison parameter as optimal profit 

or total value for filling knapsack using available weight then greedy is better than dynamic. 

If we consider time then dynamic take less amount of time compare with greedy. so we can 

say that dynamic is better than greedy with respect to time. 
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