
International journal of Advance Engineering and Research Development (IJAERD)

Volume 1 Issue 1, February 2014, ISSN: 2348 - 4470

@IJAERD-2014, All Rights Reserved 1

Comparision of Dynamic and Greedy Approach for

Knapsack Problem

Jay Vala
1
, Jaymit Pandya

2
, Dhara Monaka

3

1
Assist. Prof. I.T. Department G H Patel College of Engg & Tech jayvala1623@gmail.com

2
Assist. Prof. I.T. Department G H Patel College of Engg & Tech erpandyajaymit@gmail.com

3
Assist.Prof. B.C.A. Department Nandkunvarba BCA Mahila College, dhara.monaka123@gmail.com

Abstract— The aim of paper is to analyze few algorithms of the 0/1 Knapsack Problem. This

problem is a combinatorial optimization problem in which one has to maximize the benefit of

objects without exceeding capacity. As it is an NP-complete problem, an exact solution for a

large input is not possible. Hence, paper presents a comparative study of the Greedy and

dynamic methods. It also gives complexity of each algorithm with respect to time and space

requirements. Our experimental results show that the most promising approaches is dynamic

programming.

Keywords-knapsack, dynamic programming, greedy programming, NP-Complete,

complexity

I. INTRODUCTION

 The Knapsack Problem is an example of a combinatorial optimization problem, which seeks

for a best solution from among many other solutions. It is concerned with a knapsack that has

positive integer volume (or capacity) V. There are n distinct items that may potentially be

placed in the knapsack. Item i has a positive integer volume Vi and positive integer benefit Bi.

In addition, there are Qi copies of item i available, where quantity Qi is a positive integer

satisfying 1 <= Qi <= Infinity. Let Xi determines how many copies of item i are to be placed

into the knapsack. The goal is to:

Maximize

Subject to the constraints

And

If one or more of the Qi is infinite, the KP is unbounded; otherwise, the KP is bounded
[1]

.

The bounded KP can be either 0-1 KP or Multiconstraint KP. If Qi = 1 for i = 1, 2, …, N, the

problem is a 0-1 knapsack problem In the current paper, we have worked on the bounded 0-1

KP, where we cannot have more than one copy of an item in the knapsack
[1]

.

II. DIFFERENT APPROACHES TO PROBLEM

1) Greedy Approach

International journal of Advance Engineering and Research Development (IJAERD)

Volume 1 Issue 1, February 2014, ISSN: 2348 - 4470

@IJAERD-2014, All Rights Reserved 2

A thief robbing a store and can carry a maximal weight of w into their knapsack. There are n

items and i
th

 item weigh w i and is worth vi dollars. What items should thief take? This

version of problem is known as Fractional knapsack problem.

The setup is same, but the thief can take fractions of items, meaning that the items can be

broken into smaller pieces so that thief may decide to carry only a fraction of xi of item i,

where 0 ≤ xi ≤ 1
[2][3]

.

2) Dynamic Approach

Again a thief robbing a store and can carry a maximal weight of w into their knapsack. There

are n items and ith item weigh w i and is worth vi dollars. What items should thief take? This

version of problem is known as 0-1 knapsack problem.

The setup is the same, but the items may not be broken into smaller pieces, so thief may

decide either to take an item or to leave it (binary choice), but may not take a fraction of an

item
[2][3]

.

III. GREEDY ALOGRITHM

George Dantzig proposed a greedy approximation algorithm to solve the unbounded

knapsack problem.
[1]

 His version sorts the items in decreasing order of value per unit of

weight, . It then proceeds to insert them into the sack, starting with as many copies as

possible of the first kind of item until there is no longer space in the sack for more. Provided

that there is an unlimited supply of each kind of item, if is the maximum value of items

that fit into the sack, then the greedy algorithm is guaranteed to achieve at least a value

of . However, for the bounded problem, where the supply of each kind of item is

limited, the algorithm may be far from optimal
[4]

.

Pseudo code for greedy knapsack algorithm is given below.

Input: v- array of values, w-array of weights, c-capacity

Output: Profit of Knapsack

1. Load <- 0

2. i<-1

3. while load < c and I <= n

4. do if wi < c – load

5. then take all item i

6. else take (c – load) /wi of item i

7. i<-i+1

III. DYNAMIC ALGORITHM

A similar dynamic programming solution for the 0/1 knapsack problem also runs in pseudo-

polynomial time. Assume are strictly positive integers.

Define to be the maximum value that can be attained with weight less than or equal

to using items up to
[5]

.

We can define recursively as follows:

http://en.wikipedia.org/wiki/George_Dantzig
http://en.wikipedia.org/wiki/Greedy_algorithm
http://en.wikipedia.org/wiki/Approximation_algorithm
http://en.wikipedia.org/wiki/Knapsack_problem#cite_note-dantzig1957-20

International journal of Advance Engineering and Research Development (IJAERD)

Volume 1 Issue 1, February 2014, ISSN: 2348 - 4470

@IJAERD-2014, All Rights Reserved 3

 if (the new item is more than the current weight

limit)

 if .

The solution can then be found by calculating . To do this efficiently we can use a

table to store previous computations.

Pseudo code for dynamic knapsack algorithm is given below.

Input: {w1

,w2,

 . . .
wn

}, W

, {b1

,b2,

 . . .
bn

}

Output: B[n, W]

1. for w  0 to W do // row 0

2. B[0,w]  0

3. for k  1 to n do // rows 1 to n

4. B[k, 0]  0 // element in column 0

5. for w  1 to W do // elements in columns 1 to W

6. if (wk  w) and (B[k-1, w- wk

] + bk

> B[k-1, w])

7. then B[k, w]  B[k-1, w- wk

] + bk

8. else

B[k, w]  B[k-1, w]

IV. RESULTS

Implemented knapsack problem with different values of weight and profit or value in Turbo

C.

If we consider a data value is w={1, 2, 5, 6, 7}, v={1, 6, 18, 22, 28} and Carrying capacity

W= 11 then output of greedy is:

Fig. 1 Solved by Greedy approach

International journal of Advance Engineering and Research Development (IJAERD)

Volume 1 Issue 1, February 2014, ISSN: 2348 - 4470

@IJAERD-2014, All Rights Reserved 4

Same data values and solving by Dynamic programming.

Fig. 2 Solved by Dynamic programming

After implemented knapsack problem in c programming for different values of weight and

profit. Result of both methods gives optimal solution and time .

Method Input Data Capacity Profit Time

Greedy

W={2,3,4,5}

 V={3,4,5,6}

9 12 16.86

W={1,2,5,6,7} ,

V={1,6,18,22,28}

11 42.67 28.73

W={10,20,30,40,50}

V={10,30,66,50,60}

100 158 26.68

Dynamic

W={2,3,4,5}

 V={3,4,5,6}

9 12 12.69

W={1,2,5,6,7} ,

V={1,6,18,22,28}

11 40 17.47

W={10,20,30,40,50}

V={10,30,66,50,60}

100 156 19.65

Table 1. Comparison of Greedy and Dynamic with different values.

International journal of Advance Engineering and Research Development (IJAERD)

Volume 1 Issue 1, February 2014, ISSN: 2348 - 4470

@IJAERD-2014, All Rights Reserved 5

 Fig 3(a) Fig 3(b)

 Fig 3(c)

Fig 3 (a, b, c) Comparison of greedy and dynamic

V. CONCLUSION

In this paper we conclude that for particular one knapsack problem we can implement two

methods greedy and dynamic. But when we implemented both method for different dataset

values then we notice something is like, we consider comparison parameter as optimal profit

or total value for filling knapsack using available weight then greedy is better than dynamic.

If we consider time then dynamic take less amount of time compare with greedy. so we can

say that dynamic is better than greedy with respect to time.

REFERENCES

[1]. George B. Dantzig, Discrete-Variable Extremum Problems, Operations Research Vol. 5, No. 2, April 1957,

pp. 266–288,doi:10.1287/opre.5.2.266

[2] Gossett, Eric. Discreet Mathematics with Proof. New Jersey: Pearson Education Inc., 2003.

[3] Levitin, Anany. The Design and Analysis of Algorithms. New Jersey: Pearson Education Inc., 2003.

[4] Mitchell, Melanie. An Introduction to Genetic Algorithms. Massachusettss: The MIT Press, 1998.

[5] Obitko, Marek. ―Basic Description.‖ IV. Genetic Algorithm. Czech Technical University (CTU).

http://cs.felk.cvut.cz/~xobitko/ga/gaintro.html

[6] Different Approaches to Solve the 0/1 Knapsack Problem. Maya Hristakeva, Dipti Shrestha; Simpson

Colleges

0
20
40
60
80
100
120

Greedy_Capaci
ty

Dyn_Capacity

0
5

10
15
20
25
30
35

Greedy_Time

Dyn_Time

0
20
40
60
80

100
120
140
160
180

Greedy_Profit

Dyn_Profit

http://en.wikipedia.org/wiki/George_Dantzig
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1287%2Fopre.5.2.266
http://cs.felk.cvut.cz/~xobitko/ga/gaintro.html

